• Title/Summary/Keyword: batch reactor experiment

Search Result 104, Processing Time 0.022 seconds

Temperature control of a batch polymerization reactor using nonlinear predictive control algorithm (비선형 예측제어 알고리즘을 이용한 회분식 중합 반응기의 온도제어)

  • 나상섭;노형준;이현구
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.1000-1003
    • /
    • 1996
  • Nonlinear unified predictive control(UPC) algorithm was applied to the temperature control of a batch polymerization reactor for polymethylmethacrylate(PMMA). Before the polymerization reaction is initiated, the parameters of the process model are determined by the recursive least squares(RLS) method. During the reaction, nonlinearities due to generation of heat of reaction and variation of heat transfer coefficients are predicted through the nonlinear model developed. These nonlinearities are added to the process output from the linear process model. And then, the predicted process output is used to calculate the control output sequence. The performance of nonlinear control algorithm was verified by simulation and compared with that of the linear unified predictive control algorithm. In the experiment of a batch PMMA polymerization, nonlinear unified predictive control was implemented to regulate the temperature of the reactor, and the validity of the nonlinear model was verified through the experimental results. The performance of the nonlinear controller turned out to be superior to that of the linear controller for tracking abrupt changes in setpoint.

  • PDF

Effects of the Variation of Aeration Time in Sequencing Batch Reactor (SBR) (1) - Nutrient Removal (Sequencing Batch Reactor (SBR)에서 포기시간 변경에 따른 영향 (1) - 영양염류 제거)

  • Jeong, No-Sung;Park, Young-Seek;Kim, Dong-Seog
    • Journal of Environmental Science International
    • /
    • v.20 no.1
    • /
    • pp.35-47
    • /
    • 2011
  • The effect of the variation of aeration time on the removal of organics, nitrogen and phosphorus using synthetic wastewater was investigated in sequencing batch reactors (SBRs) which included DNPAOs and DNGAOs. The cycling times in four SBRs were adjusted to 12 hours and then included different aerobic times as 1 hr, 2.5 hr, 4 hr and 5.5 hr, respectively. Four SBR systems have been operated and investigated for over 40 days. Average TOC removal efficiencies were about 71 % in all SBRs. The $NH_4^+$-N removal efficiency was increased as the increase of aeration time. After changing aeration time, the total nitrogen removal efficiencies of SBRs were shown as 35 %, 85 %, 75 % and 65 %, respectively. Higher phosphorus release and uptake were occurred as the decrease of the aeration time. After all, the overall phosphorus removal efficiency decreased and the deterioration of phosphorus removal was occurred when aeration time was over 4 hr. Denitrification in aerobic conditions was observed, which showed the presence of DNPAOs and DNGAOs. In batch experiments, PAOs were shown as the most important microorganisms for the phosphorus removal in this experiment, and the role of DNGAOs was higher than that of DNAPOs for the nitrogen removal.

Physical property control for a batch polymerization reactor

  • Kim, In-Sun;Ahn, Sung-Mo;Rhee, Hyun-Ku
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10a
    • /
    • pp.263-266
    • /
    • 1996
  • A method to determine an optimal temperature trajectory that guarantees polymer products having controlled molecular weight distribution and desired values of molecular weight is presented. The coordinate transformation method and the optimal control theory are applied to a batch PMMA polymerization system to calculate the optimal temperature trajectory. Coordinate transformation method converts the original fixed-end-point, free-end-time problem to a free-end-point, fixed-end-time problem. The idea is that by making the reactor temperature track the optimal temperature trajectory one may be able to produce polymer products having the prespecified physical property in a minimum time. The on-line control experiments with the PID control algorithm have been conducted to establish the validity of the scheme proposed in this study. The experimental results show that prespecified polymer product could be obtained with tracking the calculated optimal temperature trajectory.

  • PDF

Characteristics of Thermal Hazard in Methylthioisocyanate Synthesis Reaction Process (Methylthioisocyanate 합성반응 공정의 열적위험 특성)

  • Han, In-Soo;Lee, Keun-Won;Lee, Joo-Yeob
    • Journal of the Korean Society of Safety
    • /
    • v.27 no.5
    • /
    • pp.77-87
    • /
    • 2012
  • Compared to a batch reactor, where all reactants are initially charged to the reactor, the semi-batch reactor presents serious advantages. The feed of at least one of the reactants provides an additional way of controlling the reaction course, which represents a safety factor and increases the constancy of the product quality. The aim of this study was to investigate the characteristics of thermal hazard such as a feed time, catalysis concentration and solvent concentration in methylthioisocyanate(MTI) synthesis reaction process. The experiments were carried out by the Multimax reactor system and Accelerating rate calorimeter(ARC). The MTI synthesis reaction process has many reaction factors and complicated reaction mechanism of multiphase reaction. Through this study, we can use as a tool for assessment of thermal hazard of other reaction processes by applying experiment method provided.

Neutralization of Synthetic Alkaline Wastewater with CO2 in a Semi-batch Jet Loop Reactor (Semi-batch Jet Loop Reactor에서 연소 배가스중 CO2를 이용한 알칼리 폐수 중화)

  • Son, Min-Ki;Sung, Ho-Jin;Lee, Jea-Keun
    • Journal of the Korean Society of Combustion
    • /
    • v.18 no.2
    • /
    • pp.17-22
    • /
    • 2013
  • In this study, we tested the absorption of $CO_2$ in combustion gas into an alkaline wastewater to simultaneously control $CO_2$ and wastewater. During the experiment, we investigated the effects of operating parameters on neutralization characteristics of the wastewater by using $CO_2$ in a bench-scale semi-batch jet loop reactor (0.1 m diameter and 1.0 m in height). The operating parameters investigated in the study are gas flow rate of 1.0-2.0 L/min, liquid recirculation flow rate of 4-32 L/min, and liquid temperature of $20-25^{\circ}C$. It was shown that the initial pH of wastewater rapidly decreased with increased gas flow rate for a given liquid recirculation flow rate. This was due to the increase in the gas holdup and the interfacial area at higher gas flow rate in the reactor. At constant gas flow rate, the time required to neutralize the wastewater initial pH of 10.1 decreased with liquid recirculation flow rate ($Q_L$), reached a minimum value in the range of $Q_L$ = 16-24 L/min, and then increased with further increase in $Q_L$. Further, the time required to neutralize the wastewater was shortened at higher temperatures.

Neutralization of Synthetic Alkaline Wastewater with CO2 in a Semi-batch Jet Loop Reactor (Semi-batch Jet Loop Reactor에서 연소 배가스중 CO2를 이용한 알칼리 폐수 중화)

  • Son, Min-Ki;Sung, Ho-Jin;Lee, Jea-Keun
    • Journal of the Korean Society of Combustion
    • /
    • v.18 no.3
    • /
    • pp.38-43
    • /
    • 2013
  • In this study, we tested the absorption of $CO_2$ in combustion gas into an alkaline wastewater to simultaneously control $CO_2$ and wastewater. During the experiment, we investigated the effects of operating parameters on neutralization characteristics of the wastewater by using $CO_2$ in a bench-scale semi-batch jet loop reactor (0.1 m diameter and 1.0 m in height). The operating parameters investigated in the study are gas flow rate of 1.0-2.0 L/min, liquid recirculation flow rate of 4-32 L/min, and liquid temperature of $20-25^{\circ}C$. It was shown that the initial pH of wastewater rapidly decreased with increased gas flow rate for a given liquid recirculation flow rate. This was due to the increase in the gas holdup and the interfacial area at higher gas flow rate in the reactor. At constant gas flow rate, the time required to neutralize the wastewater initial pH of 10.1 decreased with liquid recirculation flow rate ($Q_L$), reached a minimum value in the range of $Q_L$ = 16-24 L/min, and then increased with further increase in $Q_L$. Further, the time required to neutralize the wastewater was shortened at higher temperatures.

A Study on Usage of Results from Batch Reactor for Design of Aerobic Digestion (호기성 소화조 설계시 회분식 반응조에서 획득된 결과의 이용방안에 관한 연구)

  • Choung, Youn-Kyoo;Ko, Kwang-Baik;Park, Joon-hong
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.8 no.3
    • /
    • pp.1-8
    • /
    • 1994
  • In the general process of design for aerobic digestion, the design for field plant of which inflow pattern is continuous inflow is performed using the results from lab scale batch reactor. However, the recent researchers reported that the general designs were performed as over-estimated, Therefore, in this study, laboratory batch experiments were carried out at $20^{\circ}C$ and pH 7.5 on the aerobic digestion of waste activated sludge at different solid levels. This treatise could consider the negligence about effective digestion periods the usage of VSS as solid concentration, and the effect of initial solid concentration of solid degration rate coefficient($k_d$) as reasons of the overestimated design, and showed the scheme of how to design for aerobic digestion from batch experiment.

  • PDF

Auto-hydrolysis of Lignocellulosics Under Extremely Low Sulphuric Acid and High Temperature Conditions in Batch Reactor

  • Tunde Victio Ojumu;Ba aku Emmanuel AttahDaniel;Eriola Betiku;Bamidele Ogbe Solomon
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.8 no.5
    • /
    • pp.291-293
    • /
    • 2003
  • Batch reactors were employed to investigate the kinetics of cellulose hydrolysis under extremely low acid (ELA) and high temperature condition. The sawdust was pretreated by Auto-hydrolysis prior to the batch reaction. The maximum yield of glucose obtained from the batch reactor experiment was about 70% for the pretreated sawdust, this occurred at 210 and 22$0^{\circ}C$. The maximum glucose yield from the untreated sawdust was much lower at these temperatures, about 55%. The maximum yields of glucose from the lignocellulosics were obtained between 15th and 20th minutes after which gradual decrease was observed.

Reproducibility of Reaeration in Sewer using Batch Reactor Test (실험반응조를 이용한 하수관에서의 재포기현상 재현 가능성에 관한 연구)

  • Hwang, Hwankook;Min, Sangyun;Cho, Jinkyu
    • Journal of the Korean GEO-environmental Society
    • /
    • v.15 no.8
    • /
    • pp.45-50
    • /
    • 2014
  • The microorganism decomposition experiment of sewage in the underground sewer has the limit of experiment condition and time. The way to reproduce the microorganism decomposition in the underground sewer was studied using batch reactor setting up the DO as a limiting condition. The DO concentration in the sewer is controlled by reaeration. It is possible to obtain correlation between flow condition and reaeration coefficient through the reproduction of reaeration phenomenon by controlling the flow condition in the sewer using this phenomenon. And it is possible to set the flow condition and agitation intensity (velocity gradient) that has the same reaeration coefficient using the correlation between the reaeration coefficient with the flow condition and reaeration coefficient with the agitation intensity. The circumstances in the sewer system was reproduced using batch reactor setting up the DO as a limiting condition from these results.

Removal of Simultaneously Biological Organic, Nitrogen, and Phosphorus Removal in Sequencing Batch Reactors using Night-soil (연속회분식 반응기(Sequencing Batch Reactor)를 이용한 분뇨중 유기물과 질소 및 인의 동시제거)

  • 한기백;박동근
    • Journal of Environmental Science International
    • /
    • v.6 no.6
    • /
    • pp.697-709
    • /
    • 1997
  • Sequencing Batch Reactor(SBR) experiments for organics and nutrients removal have been conducted to find an optimum anaerobic/anoxic/aerobic cycling time and evaluate the applicability of oxidation-reduction potential(ORP) as a process control parameter. In this study, a 61 bench-scale plant was used and fed with night-soil wastewater in K city which contained TCODcr : 10, 680 mg/l, TBm : 6, 893 mg/l, $NH_4^+-N$ : 1, 609 mg/l, $PO_4^{3-}-P$ : 602 mg/l on average. The cycling time In SBRs was adjusted at 12 hours and 24 hours, and then certainly included anaerobic, aerobic and inoxic conditions. Also, for each cycling time, we performed 3 series of experiment simultaneously which was set up 10 days, 20 days and 30 days as SRT From the experimental results, the optimum cycling time for biological nutrient removal with nlght-soil wastewater was respctively 3hrs, 5hrs, 3hrs(anaerobic-aerobic-anoxic), Nitrogen removal efficiency was 77.9%, 77.9%, 81.7% for each SRT, respectively. When external carbon source was fed in the anoxic phase, ORP-bending point indicating nitrate break point appeared clearly and nitrogen removal efficiency increased as 96.5%, 97.1%, 98.9%. Phosphate removal efficiency was 59.8%, 64.571, 68.6% for each SRT. Also, we finded the applicability of ORP as a process control parameter in SBRs.

  • PDF