• 제목/요약/키워드: beam end connector

검색결과 15건 처리시간 0.025초

Behavior of steel and concrete composite beams with a newly puzzle shape of crestbond rib shear connector: an experimental study

  • Le, Van Phuoc Nhan;Bui, Duc Vinh;Chu, Thi Hai Vinh;Kim, In-Tae;Ahn, Jin-Hee;Dao, Duy Kien
    • Structural Engineering and Mechanics
    • /
    • 제60권6호
    • /
    • pp.1001-1019
    • /
    • 2016
  • The connector is the most important part of a composite beam and promotes a composite action between a steel beam and concrete slab. This paper presents the experiment results for three large-scale beams with a newly puzzle shape of crestbond. The behavior of this connector in a composite beam was investigated, and the results were correlated with those obtained from push-out-test specimens. Four-point-bending load testing was carried out on steel-concrete composite beam models to consider the effects of the concrete strength, number of transverse rebars in the crestbond, and width of the concrete slab. Then, the deflection, ultimate load, and strains of the concrete, steel beam, and crestbond; the relative slip between the steel beam and the concrete slab at the end of the beams; and the failure mechanism were observed. The results showed that the general behavior of a steel-concrete composite beam using the newly puzzle shape of crestbond shear connectors was similar to that of a steel-concrete composite beam using conventional shear connectors. These newly puzzle shape of crestbond shear connectors can be used as shear connectors, and should be considered for application in composite bridges, which have a large number of steel beams.

단부 철근콘크리트-중앙부 철골로 구성된 복합(複合)보의 거동(擧動)에 관한 실험적 연구 (An Experimental Study on the Behavior of Hybrid Beam Composed of End Reinforced Concrete-Center Steel)

  • 강병수;김성은;최현식
    • 한국강구조학회 논문집
    • /
    • 제14권3호
    • /
    • pp.413-421
    • /
    • 2002
  • 본 연구에서는 반복 재하실험에 의해서 단부 철근콘크리트 중앙부 철골로 이루어진 복합보의 접합부 형상에 따른 역학적 거동을 파악하고자 한다. 실험결과와 종국내력식을 비교 검증하고 합성효과, 내진성능 및 응력전달의 유효성을 검토한다. 각 실험체의 유형은 주근용접형, 정착판 보강형, 시어코넥터 보강형, 시어코넥터형으로 한다. 그 결과 정착판 보강형과 시어코넥터 보강형은 내력 및 내진성능이 우수한 것으로 평가되었으며, 철근콘크리트와 철골 접합부분이 일체성을 확보하여 응력전달에 유리한 것으로 나타났다. 그러나 기존의 종국내력식은 실험결과와 다소 차이가 있는 것으로 나타나 보다 명확한 종국내력식이 요구되고 있다.

BESTOBEAM 전단연결재의 길이에 따른 전단 내력 평가 (Shear Resistance of BESTOBEAM Shear Connector According to the Length)

  • 안형준;정인용;김영주;황재선
    • 한국강구조학회 논문집
    • /
    • 제27권5호
    • /
    • pp.483-491
    • /
    • 2015
  • 앵글을 전단연결재로 사용한 시공개선형 합성보(BESTOBEAM)의 전단연결재 길이에 따른 전단 내력을 실험적으로 평가하고 전단내력 설계식을 제안하였다. Eurocode 4의 경우와 달리 BESTOBEAM의 전단연결재는 등분포 하중을 받는 보의 거동과 유사하며 그 순경간(BESTO Width)에 따라 전단 내력이 달라진다. BESTO Width와 콘크리트의 강도에 따른 전단 내력을 Push-out 실험을 통해 측정한 결과 BESTO Width가 길어질수록 내력이 감소하고 연성능력은 증가하는 경향을 보였다. 실험결과를 반영하여 Eurocode 4의 설계식을 수정하여 새로운 설계식을 제안하였다. 제안된 설계식을 통해 예측된 전단연결재의 강도는 10% 오차 범위 이내로 잘 맞는 것을 확인할 수 있었다. 따라서 앵글을 전단연결재로 사용한 BESTOBEAM의 전단 강도 설계에 제안된 식을 사용할 수 있을 것으로 판단된다.

Perfobond rib 전단연결재가 설치된 강.콘크리트 합성보의 정적거동 (Static Behavior of Steel-Concrete Composite Beam with Perfobond Rib Shear Connector)

  • 안진희;정하민;김상효
    • 한국강구조학회 논문집
    • /
    • 제21권4호
    • /
    • pp.421-432
    • /
    • 2009
  • 본 연구는 perfobond rib 전단연결재를 사용한 합성보의 정적거동 특성을 파악하기 위하여 perfobond rib 전단연결재의 push-out 실험과 perfobond rib 전단연결재를 설치한 합성보의 하중재하 실험을 실시하였다. Perfobond rib의 전단저항성능은 콘크리트 강도 증가에 의한 콘크리트 선단지지력 및 콘크리트 다웰의 전단저항 성능 증가로 콘크리트 강도에 비례하며 횡방향 철근의 휨변형 성능에 대한 제한으로 연성효과를 나타내는 상대슬립은 일정 콘크리트 강도이상에서는 증가하지 않았다. 합성보의 하중재하 실험결과, 합성보에 휨 하중과 휨 전단하중이 동시에 작용하게 되므로 rib 홀에 배치된 횡방향 철근과 콘크리트 다웰부의 전단저항에 따라 합성보 콘크리트 슬래브의 rib 홀의 위치에서 횡방향 균열이 발생하였으며, perfobond rib 배치방법에 따라 합성단면 경계에서의 상대변위로 강성전단연결재의 전단거동 특성을 확인하였다. Perfobond rib와 같이 합성보에 대한 전단저항 성능이 큰 강성 전단연결재의 경우 전단연결재에 의한 합성보의 거동이 변화하므로 합성보 단면설계시 이에 대한 고려가 필요하다.

Comparison of support vector machines enabled WAVELET algorithm, ANN and GP in construction of steel pallet rack beam to column connections: Experimental and numerical investigation

  • Hossein Hasanvand;Tohid Pourrostam;Javad Majrouhi Sardroud;Mohammad Hasan Ramasht
    • Structural Engineering and Mechanics
    • /
    • 제87권1호
    • /
    • pp.19-28
    • /
    • 2023
  • This paper describes the experimental investigation of steel pallet rack beam-to-column connec-tions. Total behavior of moment-rotation (M-φ) curve and the effect of particular characteristics on the behavior of connection were studied and the associated load strain relationship and corre-sponding failure modes are presented. In this respect, an estimation of SPRBCCs moment and rotation are highly recommended in early stages of design and construction. In this study, a new approach based on Support Vector Machines (SVMs) coupled with discrete wavelet transform (DWT) is designed and adapted to estimate SPRBCCs moment and rotation according to four input parameters (column thickness, depth of connector and load, beam depth,). Results of SVM-WAVELET model was compared with genetic programming (GP) and artificial neural networks (ANNs) models. Following the results, SVM-WAVELET algorithm is helpful in order to enhance the accuracy compared to GP and ANN. It was conclusively observed that application of SVM-WAVELET is especially promising as an alternative approach to estimate the SPRBCCs moment and rotation.

Estimation of moment and rotation of steel rack connections using extreme learning machine

  • Shariati, Mahdi;Trung, Nguyen Thoi;Wakil, Karzan;Mehrabi, Peyman;Safa, Maryam;Khorami, Majid
    • Steel and Composite Structures
    • /
    • 제31권5호
    • /
    • pp.427-435
    • /
    • 2019
  • The estimation of moment and rotation in steel rack connections could be significantly helpful parameters for designers and constructors in the initial designing and construction phases. Accordingly, Extreme Learning Machine (ELM) has been optimized to estimate the moment and rotation in steel rack connection based on variable input characteristics as beam depth, column thickness, connector depth, moment and loading. The prediction and estimating of ELM has been juxtaposed with genetic programming (GP) and artificial neural networks (ANNs) methods. Test outcomes have indicated a surpass in accuracy predicting and the capability of generalization in ELM approach than GP or ANN. Therefore, the application of ELM has been basically promised as an alternative way to estimate the moment and rotation of steel rack connection. Further particulars are presented in details in results and discussion.

Seismic characterization of cold formed steel pallet racks

  • Saravanan, M.;Marimuthu, V.;Prabha, P.;Surendran, M.;Palani, G.S.
    • Earthquakes and Structures
    • /
    • 제7권6호
    • /
    • pp.955-967
    • /
    • 2014
  • Storage racks are used worldwide in industries and commercial outlets due to the advantage of lighter, faster erection and easy alteration of pallet level as required. The studies to understand the behaviour of cold formed steel pallet racks, under seismic action is one of the emerging area of research. The rack consists of perforated uprights and beams with hook-in end connector, which enables the floor height adjustments. The dynamic characteristics of these racks are not well established. This paper presents the dynamic characteristics of 3-D single bay two storey pallet rack system with hook-in end connectors, which is tested on shake table. The sweep sine test and El Centro earthquake acceleration is used to evaluate the seismic performance of the cold formed steel pallet racks. Also an attempt is made to evaluate the realistic dynamic characteristics by using STAAD Pro software. Modal analysis is performed by incorporating the effective moment of inertia of the upright, which considers the effect of presence of perforations and rotational stiffness of the beam-to-upright connection to determine the realistic fundamental frequency of pallet racks, which is required for carrying out the seismic design. Finite element model of the perforated upright section has been developed as a cantilever beam through which effective moment of inertia is evaluated. The stiffness of the hook-in connector is taken from the previous study by Prabha et al. (2010). The results from modal analysis are in good agreement with the respective experimental results.

스티프너로 보강한 콘크리트 충전 원형 강관기둥의 부착응력에 관한 실험적 연구 (An Experimental Study on a Bond Stress in Concrete Filled Circular Steel Tubular Column Strengthened by the Stiffener)

  • 박성무;김성수;김원호;이형석
    • 한국공간구조학회논문집
    • /
    • 제2권2호
    • /
    • pp.51-58
    • /
    • 2002
  • This paper is presented an experimental studies on bond stress between steel and concrete in concrete filled steel tubes. In the actual building frames, vertical dead and live loads on beams are usually transferred to columns by beam-to-column connections. In case when concrete filled steel tubes are used as columns of an actual building frame which has a simple connection, shear forces in the beam ends are not directly transferred to the concrete core but directly to the steel tube. Provided that the bond effect between steel tube and concrete core should not be expected, none of the end shear in the beams would be transferred to the concrete core but only to the steel tube. Therefore, it is important to investigate the bond strength between steel tube and concrete core in the absence of shear connectors.

  • PDF

중심 축 하중을 받는 충전각형강관 합성기둥의 부착응력에 관한연구 (Experimental Study on Bond Stress of Concrete Filled Rectangular Steel Tubular Composite Column Subjected to Axial Load)

  • 이형석;박성무
    • 한국공간구조학회논문집
    • /
    • 제3권3호
    • /
    • pp.105-110
    • /
    • 2003
  • This paper is presented an experimental studies on bond stress between steel and concrete in concrete filled Rectangular steel tubes. In the actual building frames, vertical dead and live loads on beams are usually transferred to columns by beam-to-column connections. In case when concrete filled steel tubes are used as columns of an actual building frame which has a simple connection, shear forces in the beam ends are not directly transferred to the concrete core but directly to the steel tube. Provided that the bond effect between steel tube and concrete core should not be expected, none of the end shear in the beams would be transferred to the concrete core but only to the steel tube. Therefore, it is important to investigate the bond strength between steel tube and concrete core in the absence of shear connectors.

  • PDF

소형 비행체 탑재를 위한 크기 비교용 방향 탐지 안테나 조립체 (An Amplitude Comparison Direction-Finding Antenna Assembly for Mounting on a Small Flight Vehicle)

  • 김재식
    • 한국군사과학기술학회지
    • /
    • 제23권5호
    • /
    • pp.459-465
    • /
    • 2020
  • In this paper, a compact antenna assembly for an amplitude comparison direction-finding(DF) method for a small flight vehicle is presented. Designed antenna assembly consists of four antennas and it is mounted on a radius of 1.45 λc where λc corresponds to the wavelength of the center frequency. To achieve compactness and robustness of the assembly, the elements are fed by end-launch feeding method and have modified aperture shapes of E- or H-sectoral horns. The feeding part consists of SMA connector, stepped impedance matching structure, and square waveguide of 0.6 λc × 0.6 λc. To achieve different main beam directions for every antenna which is required condition for amplitude comparison DF method, all apertures of the antennas are inclined and it makes the main beam direction of each antenna to top, bottom, left, and right with respect to the axis of the platform. To verify the validation of DF performance of the presented antenna assembly, amplitude comparison curves using measurement results are presented. The bandwidth of the antennas are above 3.2 % in Ku-band(VSWR ≤ 2:1).