• 제목/요약/키워드: bending connection

검색결과 233건 처리시간 0.025초

볼트 유격을 고려한 단층 그리드 노드 접합 시스템의 휨 강성에 대한 구조 해석적 평가 (Numerical Evaluation on Bending Stiffness of Nodal Connection Systems in the Single Layered Grid Considering Bolt Clearance)

  • 황경주
    • 한국공간구조학회논문집
    • /
    • 제20권4호
    • /
    • pp.141-147
    • /
    • 2020
  • Single-layered grid space steel roof structure is an architectural system in which the structural ability of the nodal connection system greatly influences the stability of the entire structure. Many bolt connection systems have been suggested to enhance for better construct ability, but the structural behavior and maximum resistance of the connection system according to the size of bolt clearance play were difficult to identify. In particular, the identification of bending stiffness of the connection system is very important due to the characteristics of shell structures in which membrane stresses based on bending force effect significantly. To identify effective structural behavior and maximum bearing force, four representative nodal connection systems were selected and nonlinear numerical analysis were performed. The numerical analysis considering the size of the bolt clearance were performed to investigate structural behavior and maximum values of the bending force. In addition, the type of effective nodal connection system were evaluated. As a result, the connection system, which has two shear plane, represented high bending stiffness.

플라스틱 온실의 강관 이음부 휨성능 분석 (Evaluation of Steel-Pipe Connections in Plastic Greenhouse Using Bending Test)

  • 최만권;류희룡;조명환;유인호
    • 생물환경조절학회지
    • /
    • 제27권4호
    • /
    • pp.391-399
    • /
    • 2018
  • 본 연구에서는 현장에서 사용되는 온실 강관의 이음 방법에 대해 휨성능을 평가하고 그 결과를 바탕으로 가장 휨성능이 우수한 이음 방법을 알아보았다. 실험 결과, 모든 실험체는 이음이 없는 실험체 보다 휨성능이 작았다. 그러나 모든 실험체의 최대 휨모멘트는 이음이 없는 실험체 소성모멘트의 1.07~1.3정도로 나타났다. 또한 연결방법에 따른 결과는 연결핀 보다 인발 실험체가 상대적으로 큰 휨성능을 보였다. 현장 이음 방법의 파괴 모드는 연결핀과 강관 끝부분의 응력집중에 의한 국부좌굴이 지배적이었다. 현장시공 시 강관을 절단 후 연결할 경우, 이음 없이 사용하는 것이 가장 우수한 휨성능을 발휘하지만 부득이 강관을 절단할 경우는 연결핀보다는 인발 강관에 직결나사로 고정한 이음 방법(SPJ-F)으로 시공하는 것이 유리할 것으로 판단된다.

Mechanical performance of a new I-section weak-axis column bending connection

  • Lu, Linfeng;Xu, Yinglu;Lim, James B.P.
    • Steel and Composite Structures
    • /
    • 제26권1호
    • /
    • pp.31-44
    • /
    • 2018
  • This paper reports a novel steel beam-to-column connection suitable for use in the weak axis of I-section column. Monotonic and cyclic loading experimental investigations and numerical analysis of the proposed weak-axis connection were conducted, and the calculation procedure of the beam-column relative rotation angle and plastic rotation angle was developed and described in details. A comparative analysis of mechanical property and steel consumption were employed for the proposed I-section column weak-axis connection and box-section column bending connection. The result showed that no signs of fracturing were observed and the plastic hinge formed reliably in the beam section away from the skin plate under the beam end monotonic loading, and the plastic hinge formed much closer to the skin plate under the beam end cyclic loading. The fracture of welds between diaphragm and skin plate would cause an unstable hysteretic response under the column top horizontal cyclic loading. The proposed weak-axis connection system could not only simplify the design calculation progress when I-section column is adopted in frame structural design but also effectively satisfy the requirements of 'strong joint and weak member', as well as lower steel consumption.

Constructability Analysis of Green Columns at the Low Bending Moment Zone

  • Lee, Sung-Ho;Park, Jun-Young;Lim, Chae-Yeon;Kim, Sun-Kuk
    • Journal of Construction Engineering and Project Management
    • /
    • 제3권4호
    • /
    • pp.12-19
    • /
    • 2013
  • Green Frame is an environmentally friendly column-beam system composed of composite PC members that can increase buildings' life spans while reducing resource consumption. Typically, connections of PC and RC columns occur at the boundaries of each floor, which is at the upper section of slabs, causing the boundary of each floor to generate the maximum moment. Although it is not optimal in terms of structural safety to connect members at a location where the moment is high, this approach is highly adopted due to its constructability. We propose that a superior approach that employs the concept of connecting columns at the low bending moment zone can be applied to quickly and safely install green columns, the main structural members of Green Frame. Connection of green columns at the low bending moment zone can be classified into three techniques, depending on the method of reinforcing the joints, which have different connection characteristics and construction methods. Research is needed to compare the features of each method of reinforcing the joints so that the most appropriate column connection method can be chosen for the site conditions. This study aims to confirm the structural safety of the connection component at the low bending moment zone and to compare and analyze the construction duration, unit price, quality and safety performance of each column connection method. The study results are anticipated to activate the use of composite precast concrete and to be used as development data in the future.

플랫 플레이트 내부 접합부의 강도산정모델 (Strength Prediction Model for Flat Plate-Column Connections)

  • 최경규;박홍근;안귀용
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2002년도 봄 학술발표회 논문집
    • /
    • pp.897-902
    • /
    • 2002
  • The failure of flat plate connection is successive failure process accompanying with stress redistribution, hence it is necessary to compute the contributions of each resistance components at ultimate state. In the present study, the interactions of resultant forces at each faces of connection, i.e. shear, bending moment and torsional moment are considered in the assessment of strength of slab. As a result the strength prediction model for connection is made up as combination of bending resistance, shear resistance and torsional resistance. The proposed method is verified by the experimental data and numerical data of continuous slabs.

  • PDF

Structural Response Analysis for Multi-Linked Floating Offshore Structure Based on Fluid-Structure Coupled Analysis

  • Kichan Sim;Kangsu Lee;Byoung Wan Kim
    • 한국해양공학회지
    • /
    • 제37권6호
    • /
    • pp.273-281
    • /
    • 2023
  • Recently, offshore structures for eco-friendly energy, such as wind and solar power, have been developed to address the problem of insufficient land space; in the case of energy generation, they are designed on a considerable scale. Therefore, the scalability of offshore structures is crucial. The Korea Research Institute of Ships & Ocean Engineering (KRISO) developed multi-linked floating offshore structures composed of floating bodies and connection beams for floating photovoltaic systems. Large-scale floating photovoltaic systems are mainly designed in a manner that expands through the connection between modules and demonstrates a difference in structural response with connection conditions. A fluid-structure coupled analysis was performed for the multi-linked floating offshore structures. First, the wave load acting on the multi-linked offshore floating structures was calculated through wave load analysis for various wave load conditions. The response amplitude operators (RAOs) for the motions and structural response of the unit structure were calculated by performing finite element analysis. The effects of connection conditions were analyzed through comparative studies of RAOs and the response's maximum magnitude and occurrence location. Hence, comparing the cases of a hinge connection affecting heave and pitch motions and a fixed connection, the maximum bending stress of the structure decreased by approximately 2.5 times, while the mooring tension increased by approximately 20%, confirmed to be the largest change in bending stress and mooring tension compared to fixed connection. Therefore, the change in structural response according to connection condition makes it possible to design a higher structural safety of the structural member through the hinge connection in the construction of a large-scale multi-linked floating offshore structure for large-scale photovoltaic systems in which some unit structures are connected. However, considering the tension of the mooring line increases, a safety evaluation of the mooring line must be performed.

Numerical analysis of the mechanical behavior of welded I beam-to-RHS column connections

  • Rosa, Rosicley J.R.;Neto, Juliano G.R.
    • Coupled systems mechanics
    • /
    • 제8권2호
    • /
    • pp.185-197
    • /
    • 2019
  • Considering the increasing use of tubular profiles in civil construction, this paper highlights the study on the behavior of welded connections between square hollow section column and I-beam, with emphasis on the assessment of the joint stiffness. Firstly, a theoretical analysis of the welded joints has been done focusing on prescriptions of the technical literature for the types of geometries mentioned. Then, a numerical analysis of the proposed joints were performed by the finite element method (FEM) with the software ANSYS 16.0. In this study, two models were evaluated for different parameters, such as the thickness of the cross section of the column and the sizes of cross section of the beams. The first model describes a connection in which one beam is connected to the column in a unique bending plane, while the second model describes a connection of two beams to the column in two bending planes. From the numerical results, the bending moment-rotation ($M-{\varphi}$) curve was plotted in order to determine the resistant bending moment and classify each connection according to its rotational capacity. Furthermore, an equation was established with the aim of estimating the rotational stiffness of welded I beam-to-RHS column connections, which can be used during the structure design. The results show that most of the connections are semi-rigid, highlighting the importance of considering the stiffness of the connections in the structure design.

Influence of the axial force on the behavior of endplate moment connections

  • Ghassemieh, Mehdi;Shamim, Iman;Gholampour, Ali Akbar
    • Structural Engineering and Mechanics
    • /
    • 제49권1호
    • /
    • pp.23-40
    • /
    • 2014
  • In this article, using finite element method of analysis (FEM), behavior of the endplate moment connection subjected to axial force and bending moment is investigated. In the FEM model, all the nonlinear characteristics such as material, geometry, as well as contact have been included. First, in order to verify the numerical model of the connection, an analysis of the endplate moment connection conducted without the application of the axial force. Results obtained from FEM indicating a close and good correlation with the experimental results. Then to investigate the influence of the axial forces, the connections subjected to axial forces as well as the bending moment are analyzed. To observe the overall effect of these actions, the momentaxial force interaction diagrams are drawn. It is observed that the presence of axial force even in a small value can change the behavior of the connection significantly. It is also shown that the axial forces can alter the failure mode of the connection; and therefore it could result in a different than the predicted moment capacity of the connection.

Analysis of end-plate connections at elevated temperatures

  • Lin, Shuyuan;Huang, Zhaohui;Fan, Mizi
    • Steel and Composite Structures
    • /
    • 제15권1호
    • /
    • pp.81-101
    • /
    • 2013
  • In this paper a robust 2-noded connection element has been developed for modelling the bolted end-plate connection between steel beam and column at elevated temperatures. The numerical procedure described is based on the model proposed by Huang (2011), incorporating additional developments to more precisely determinate the tension, compression and bending moment capacities of end-plate connection in fire. The proper failure criteria are proposed to calculate the tension capacity for each individual bolt row. In this new model the connection failure due to bending, axial tension, compression and shear are considered. The influence of the axial force of the connected beam on the connection is also taken into account. This new model has the advantages of both the simple and component-based models. In order to validate the model a total of 22 tests are used. It is evident that this new connection model has ability to accurately predict the behaviour of the end-plate connection at elevated temperatures, and can be used to represent the end-plate connections in supporting performance-based fire resistance design of steel-framed composite buildings.

Influence of abutment materials on the implant-abutment joint stability in internal conical connection type implant systems

  • Jo, Jae-Young;Yang, Dong-Seok;Huh, Jung-Bo;Heo, Jae-Chan;Yun, Mi-Jung;Jeong, Chang-Mo
    • The Journal of Advanced Prosthodontics
    • /
    • 제6권6호
    • /
    • pp.491-497
    • /
    • 2014
  • PURPOSE. This study evaluated the influence of abutment materials on the stability of the implant-abutment joint in internal conical connection type implant systems. MATERIALS AND METHODS. Internal conical connection type implants, cement-retained abutments, and tungsten carbide-coated abutment screws were used. The abutments were fabricated with commercially pure grade 3 titanium (group T3), commercially pure grade 4 titanium (group T4), or Ti-6Al-4V (group TA) (n=5, each). In order to assess the amount of settlement after abutment fixation, a 30-Ncm tightening torque was applied, then the change in length before and after tightening the abutment screw was measured, and the preload exerted was recorded. The compressive bending strength was measured under the ISO14801 conditions. In order to determine whether there were significant changes in settlement, preload, and compressive bending strength before and after abutment fixation depending on abutment materials, one-way ANOVA and Tukey's HSD post-hoc test was performed. RESULTS. Group TA exhibited the smallest mean change in the combined length of the implant and abutment before and after fixation, and no difference was observed between groups T3 and T4 (P>.05). Group TA exhibited the highest preload and compressive bending strength values, followed by T4, then T3 (P<.001). CONCLUSION. The abutment material can influence the stability of the interface in internal conical connection type implant systems. The strength of the abutment material was inversely correlated with settlement, and positively correlated with compressive bending strength. Preload was inversely proportional to the frictional coefficient of the abutment material.