• Title/Summary/Keyword: bending properties

Search Result 2,008, Processing Time 0.033 seconds

Study on the Prediction of the Work-Energy to the Maximum Load and Impact Bending Energy from the Bending Properties (국산 소경재의 휨 성질을 이용한 충격에너지와 최대하중까지 일-에너지 예측연구)

  • Cha, Jae-Kyung
    • Journal of the Korea Furniture Society
    • /
    • v.19 no.5
    • /
    • pp.350-357
    • /
    • 2008
  • This research investigates the bending properties to predict the work-energy to maximum load and impact bending energy from static bending and impact bending test. Specimens were prepared from lumber made of thinning crop-trees. Matched specimens were used for MC 12% and green moisture specimens to measure the effect of moisture content on the absorbed energy from static and impact bending tests. The bending properties such as MOE, MOR, etc. is a good predictor to investigate the work-energy and work-energy per unit volume from static bending and impact bending test. The impact bending energy is increased with increasing moisture content. However, the work to maximum load from static bending test is increasing with increasing the MC only for higher density species.

  • PDF

A Study on the Bending Properties of Fabrics for Korean Women's Clothes (부인용 한복지의 굽힘특성에 관한 연구)

  • 성수광
    • Journal of the Korean Home Economics Association
    • /
    • v.26 no.1
    • /
    • pp.11-19
    • /
    • 1988
  • Bending properties of 168 commercial silk fabrics and polyester fabrics for korean women's clothes were tested by KES-F system. Samples were classified into for summer, fall & winter fabrics. In this study, bending regidity(B) and bending hysteresis(2HB) were measured, then 2HB/W, {{{{ SQRT { 2HB/W} }}}}, 2HB/B which are concerning to formation of weared clothes and transformation behavior were investigated. fabrics for korean women's silk clothes for fall & winter were compared with fabrics for japanese kimono clothes on the bending properties. The results were as follows : 1. The bending regidity of silk fabrics were higher than polyester fabrics and bending hysteresis of fall & winter fabrics were higher than summer fabrics. 2. The 2HB/W and {{{{ SQRT { 2HB/W} }}}} of polyester fabrics were lower than silk fabrics. 3. the silk fabrics for summer clothes were the least in 2HB/B. 4. Silk fabrics for korean women's clothes were almost the same in bending rigidity, bending hysteresis and thickness of fabrics for japanese kimono clothes, but weight of the silk fabrics were lower to fabrics for jpanese kimono clothes.

  • PDF

A Study on the Physical Properties of Silk Fabrics - Bending and Luster Properties - (견직물(絹織物)의 물리적(物理的) 특성(特性) 변화(變化)에 대(對)한 연구(硏究) - 굽힘 및 광택(光澤) 특성(特性)-)

  • Park, Shin-Jung;Kim, Jong-Jun;Jeon, Dong-Won
    • Journal of Fashion Business
    • /
    • v.8 no.5
    • /
    • pp.31-40
    • /
    • 2004
  • The purpose of this study is to investigate the change of the physical properties, bending and luster properties, which are related to the touch and appearance of silk fabrics modified by the degumming process. The silk has long been known as one of the most elegant and soft textile materials. The raw silk yarn, or cocoon bave, spun from the spinneret, is rather stiff due to the sericin covering the two fibroins together. The sericin can be removed during a degumming process. The removal of the sericin would result in remarkable change in the physical properties of the raw silk fabrics, including luster of the fabrics, which process parameters could possibly be utilized to adequately control the silk fabric properties. The KES(Kawabata Evaluation System) is a testing methodology that has been used with considerable success for predicting the hand and tailorability of apparel fabrics. This study uses one of the KES, bending tester, to measure the bending properties of the silk fabrics degummed for specified period to change the physical/mechanical properties of the fabric. The KES bending measurement revealed that the bending rigidity decreased for both the warp and weft direction of the silk fabrics with the increase of the degumming period. It has been shown in this study that the some of the hand-related physical properties, including the bending rigidity, drapability, and luster, could be modified with the change in the degumming period.

The Effect of Exposure in Elevated Temperatures on Bending Properties of Wood

  • Park, Joo-Saeng;Lee, Jun-Jae
    • Journal of the Korean Wood Science and Technology
    • /
    • v.27 no.4
    • /
    • pp.20-29
    • /
    • 1999
  • Temperature has important effect on mechanical properties of wood. These effect needs to be understood and taken into account in the structural use of wood. Furthermore, the effect of cooling after exposing to high temperature must be explained. In this study, the effect of temperature, exposure time, specific gravity, and cooling on bending properties were investigated. The boundary temperatures at which bending MOE and MOR reduced rapidly were approximately $200^{\circ}C$ and $150^{\circ}C$, respectively. This boundary temperature was nearly constant with independence of species(specific gravity), exposure time, and cooling. Above the boundary temperature, the effect of exposure time was increased with temperature and the reduction of bending MOE and MOR for Japanese Larch with relatively higher specific gravity was smaller than that of Hem-fir. The recovery of bending MOE and MOR after cooling was also more significant above the boundary temperature than below. The degree of cooling effect was larger for MOR than MOE. Consequently, bending properties of wood in elevated temperatures should be considered in terms of the boundary temperature, $200^{\circ}C$ for bending MOE, $150^{\circ}C$ for MOR, and these boundary temperatures must be considered an important factor. Furthermore, to evaluate the safety of structure, the recovery after cooling should be considered.

  • PDF

Bending Properties of ZnO Nanorod using Nano-Manipulator (나노조작기를 이용한 ZnO 나노막대 굽힘 물성 평가)

  • Jeon, Sang-Gu;Jang, Hoon-Sik;Kwon, Oh-Heon;Nahm, Seung-Hoon
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.260-263
    • /
    • 2008
  • The bending test of an individual ZnO nanorod was performed with a nano-manipulator and a force sensor inside the scanning electron microscope (SEM), and the bending properties of ZnO nanorod were also discussed. The ZnO nanorod used in this experiment was fabricated by means of solution base process. The force sensor used for bending test of ZnO nanorod was typed with cantilever. The force sensor was mounted on the nano-manipulator. The nano-manipulator was controlled and manipulated by a personal computer. The each end of an individual ZnO nanorod was attached on the rigid support and the tip of the force sensor with an electron beam exposure, and then the bending test was carried out by controlling of the nano-manipulator. The bending modulus of a ZnO nanorod was calculated at 69.35GPa after the bending test.

  • PDF

Physical Properties of Polyester, Tencel and Cotton MVS Blended Yarns with Yarn counts and Blend Ratio (PET, Tencel, Cotton MVS 혼방사의 섬도와 혼용률에 따른 물성 특성)

  • Sa, A-Na;Lee, Jung Soon
    • Fashion & Textile Research Journal
    • /
    • v.17 no.2
    • /
    • pp.287-294
    • /
    • 2015
  • This study investigates the physical properties of Murata Vortex Spinning (MVS) blended yarn with yarn count(20's, 30's, 40's) and blend ratio(Polyester 100, Polyester70:Cotton30, Polyester50:Cotton50, Polyester30:Cotton70, and Polyester50:Tencel40:Cotton10). This study evaluated tenacity, elongation, bending rigidity, bending hysteresis, hairiness coefficient, irregularity and twist number. The structure of MVS blended yarn influenced stress, strain, bending rigidity, bending hysteresis and the hairiness coefficient of MVS blended yarn decreased as the yarn count increased. MVS blended yarn consists of core and sheath. The core of MVS blended yarn is composed of a parallel fiber with a wrapping fiber that covers thecore fiber. This special structure of the MVS blended yarn effects the physical properties of the yarn; in addition, the mechanical properties of the component fibers influenced the stress, strain, bending rigidity, bending hysteresis and hairiness coefficient of MVS blended yarn with the blend ratio. Polyester decreases and cotton increases resulted in decreased physical properties. A similar polyester content increased the tencel and physical properties. Appropriate physical properties and a variety of touch expression can be realized through a correct blend ratio.

Mechanical Properties of Cucumber under Bending Force (휨하중(荷重)을 받는 오이의 역학적(力學的) 특성(特性))

  • Kim, M.S.;Song, C.H.;Park, J.M.
    • Journal of Biosystems Engineering
    • /
    • v.18 no.1
    • /
    • pp.30-36
    • /
    • 1993
  • Cucumbers being living biological materials are generally vulnerable to external forces, especially, bending force during the processes, because they have usually longish shape. Understanding the mechanical and viscoelastic properties of cucumber is important to analyze various characteristics which might be helpful in determining design parameters for the processing equipment such as sorting, packaging and transporting machine. The objectives of this study were to determine ultimate bending strength, deflections, and hysteresis losses for the cucumbers from the bending tests. Within the range of loading rate from 20 to 100mm/min, the ultimate bending strength of the cucumber samples were 525-630kPa at the Gyeousalicheongjang and the Baekdadagi, and 476~618kPa at the Cheongjangmadi, respectively, but the ultimate bending deflection ratio of the Cheongjangmadi showed the highest value among the tested samples. The effect of loading rate on the physical properties of the cucumber was relatively significant, all considered physical properties and degree of elasticity of the cucumber increased with the loading rate, but the hysteresis loss decreased with it.

  • PDF

Mechanical Properties Change of the Slacks Knee Part by the Bending Time (굽힘반복에 따른 슬랙스 무릎부위의 역학적특성 변화)

  • Lee, Joung-Suk;Kwon, Hyun-Sun;Sung, Su-Kwang
    • Fashion & Textile Research Journal
    • /
    • v.6 no.4
    • /
    • pp.497-502
    • /
    • 2004
  • The mechanical properties of jean slacks to the type of cutting lines in knee region and the bending time, after doing bending 0 times, 500 times, and 1500 times, the effects of whether or not cutting line, the fabric direction of the cutting area, and the number of cutting lines were investigated for tensile, shearing, compression, and mixing value of mechanical properties. The results are as follows: EM to bending times were larger in order of weft

Development of a Pure Bending Test Machine and Bending Collapse Characteristics of Rectangular Tubes (순수굽힘 시험기개발 및 사각관부재의 굽힘붕괴특성 연구)

  • 강신유;장인배;김헌영
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.1
    • /
    • pp.222-233
    • /
    • 1998
  • A 4-point pure bending res machine is developed the evaluate the pure vending moment-rotation properties of the thin-walled tubes without imposing shear and tensile forces. The moment-rotation properties of the thin-walled tubes are measured up to and beyond collapse with the pure bending test machine. The test results are compared with those of finite element analyses and existing analytical solution.

  • PDF

Evaluation of Static Bending Properties for Some Domestic Softwoods and Tropical Hardwoods Using Sonic Stress Wave Measurements (응력파(應力波) 측정(測定)에 의(依)한 수종(數種)의 국산(國産) 침엽수재(針葉樹材) 및 열대(熱帶) 활엽수재(闊葉樹材)의 휨성질(性質) 평가(評價))

  • Lee, Do-Sik;Jo, Jae-Sung;Kim, Gyu-Hyeok
    • Journal of the Korean Wood Science and Technology
    • /
    • v.25 no.1
    • /
    • pp.8-14
    • /
    • 1997
  • Stress wave velocity, wave impedance, and stress wave elasticity of small, clear bending specimens of five domestic softwoods (Pinus densiflora, Pinus koraiensis, Chamaecyparis obtusa, Cryptomeria japonica, and Larix leptolepis) and four tropical hardwoods(Kempas, Malas, Taun, and Terminalia) were correlated with static bending modulus of elasticity(MOE) and modulus of rupture(MOR). The degree of correlation between stress wave parameters and static bending properties was dependent on wood species tested. Stress wave elasticity and wave impedance were better predictors for static bending properties than stress wave velocity for each species individually and for softwood or hardwood species taken as a group, even though elasticity and impedance were nearly equally correlated with static bending properties apparently. Based upon the correlation coefficient between stress wave parameters and static properties, stress wave elasticity and wave impedance were found as stress wave parameters which can be used for the purpose of the reliable and successful prediction of bending properties. The degree of correlation between static MOE and MOR was also different according to wood species tested. Static MOE was nearly as well correlated with MOR as was stress wave elasticity. The results of this research are encouraging and can be considered as a basis for further work using full-size lumber. From the results of this study, it was concluded that stress wave measurements could provide useful predictions of static bending properties and was a feasible method for machine stress grading of domestic softwoods and tropical hardwoods tested in this study.

  • PDF