• Title/Summary/Keyword: bending stiffness

Search Result 1,047, Processing Time 0.03 seconds

Development of Measurement Device for Bending Stiffness of Footwear (신발의 굽힘강성 측정 장비의 개발)

  • Lee, Jong-Nyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.3
    • /
    • pp.1078-1084
    • /
    • 2011
  • In design of sport footwear, bending stiffness of its toe part is an important factor though it can be hardly measured. This paper introduces a device for measuring the bending stiffness. The device is simply designed with aluminum frames, one AC motor, two load-cells, one encoder and control hardwares. The mechanism measuring the bending moment of a shoe is described. Then, it was used to observe how the midsole material and design of a sports shoe affect on its bending stiffness. For the experiments, various specimens prepared, where each midsole of the specimens is different in terms of material, thickness and hardness. With those specimens, experiments were performed by using the device and then the bending stiffness was computed by applying the least square curve fitting after the bending moment data were measured. The specimen with Poly-urethane(PU) midsole has the higher bending stiffness than the one with Phylon(PH) midsole, and the midsole thickness affects more on the bending stiffness than the midsole hardness. Based on those results, it can be concluded that the measurement device can provide consistent bending stiffness data to sports footwear and the bending stiffness of a footwear measured by the developed device can be used as a major parameter in the footwear design.

Development of a Functional Fixator System for Bone Deformity Near Joints

  • Chun, Keyoung-Jin;Lee, Ho-Jung
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.2
    • /
    • pp.234-241
    • /
    • 2006
  • A functional external fixator system for bone deformity near the joints using worm gear was developed for curing the angle difference in fracture bones while the lengthening bar was developed for curing the differences in length, also in fracture bones. Both experiments and FE analysis were performed to compare the elastic stiffness in several loading modes and to improve the functional external fixator system for bone deformity near joints. The FE model using compressive and bending FE analysis was applied due to the angle differentiations. The results indicate that compressive stiffness value in the experiment was 175.43N/mm, bending stiffness value in the experiment was 259.74 N/mm, compressive stiffness value in the FEA was 188.67 N/mm, and bending stiffness value in the FEA was 285.71 N/mm. Errors between experiments and FEA were less than $10\%$ in both the 'compressive stiffness and the bending stiffness. The maximum stress (157 MPa) applied to the angle of the clamp was lower than the yield stress (176.4 MPa) of SUS316L. The degree of stiffness in both axial compression and bending of the new fixator are about 2 times greater than other products, with the exception of EBI (2003).

Hingeless Blade Flexure Bending Stiffness Reinforcement for Whirl Tower Test (훨타워 시험 수행을 위한 무힌지 블레이드 플렉셔 굽힘 강성 보강)

  • Kim, Taejoo;Kee, Youngjoong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.42 no.5
    • /
    • pp.390-397
    • /
    • 2014
  • BO-105 helicopter applies hingeless rotor hub system and blade root uses a flexure of hingeless rotor hub system. So bending stiffness reinforcement for flexure was conducted for preparation of whirl tower test using BO-105 blade. Bending moment of flexure area was calculated with FE modeling of section shape for stiffness reinforcement of flexure and thickness of composite material for reinforcement was chosen. Flexure bending stiffness reinforcement was conducted and bending stiffness measurement test was performed before and after bending stiffness reinforcement. And the test data are compared with analysis results.

Stiffness model for "column face in bending" component in tensile zone of bolted joints to SHS/RHS column

  • Ye, Dongchen;Ke, Ke;Chen, Yiyi
    • Steel and Composite Structures
    • /
    • v.38 no.6
    • /
    • pp.637-656
    • /
    • 2021
  • The component-based method is widely used to analyze the initial stiffness of joint in steel structures. In this study, an analytical component model for determining the column face stiffness of square or rectangular hollow section (SHS/RHS) subjected to tension was established, focusing on endplate connections. Equations for calculating the stiffness of the SHS/RHS column face in bending were derived through regression analysis using numerical results obtained from a finite element model database. Because the presence of bolt holes decreased the bending stiffness of the column face, this effect was calculated using a novel plate-spring-based model through numerical analysis. The developed component model was first applied to predict the bending stiffness of the SHS column face determined through tests. Furthermore, this model was incorporated into the component-based method with other effective components, e.g., bolts under tension, to determine the tensile stiffness of the T-stub connections, which connects the SHS column, and the initial rotational stiffness of the joints. A comparison between the model predictions, test data, and numerical results confirms that the proposed model shows satisfactory accuracy in evaluating the bending stiffness of SHS column faces.

Numerical investigation of effect of geotextile and pipe stiffness on buried pipe behavior

  • Candas Oner;Selcuk Bildik;J. David Frost
    • Geomechanics and Engineering
    • /
    • v.34 no.6
    • /
    • pp.611-621
    • /
    • 2023
  • This paper presents the results of a numerical investigation of the effect of geotextile reinforcement on underlying buried pipe behavior using PLAXIS 3D. In this study, variable parameters such as the in-plane stiffness of the geotextile, the pipe stiffness, the soil stiffness, the footing width, the geotextile width, and the location of the geotextile reinforcement layer are investigated. Deflections and bending moments acting on the pipe are evaluated for different combinations of variables and are presented graphically. It is observed that with an increase in the in-plane stiffness of the geotextile reinforcement, there is a tendency for a decrease in both deflections in the pipe and bending moments acting on the pipe. Conversely, with an increase in the pipe stiffness, geotextile reinforcement efficiency decreases. In the investigated region of soil stiffness, for the given pipe and geotextile stiffness, an optimum efficiency of geotextile is observed in medium dense soils. Further, it is shown that relative lengths of geotextile and footing has an important role on geotextile efficiency. Lastly, it is also demonstrated that relative location of geotextile layer with respect to the buried pipe plays an important role on the geotextile efficiency in reducing the bending moments acting on the pipe and deflections in the pipe. In general, geotextiles are more efficient in reducing the bending moments as opposed to reducing deflections of the pipe. Numerical validation is done with an experimental study from the literature to observe the applicability of the numerical model used.

Development of a Functional External Fixator System for Bone Deformity near Joints in Legs (족관절 근위부 골교정용 기능성 체외고정장치 개발)

  • Lee Ho-Jung;Chun Keyoung-Jin
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.3 s.168
    • /
    • pp.162-169
    • /
    • 2005
  • The functional external fixator system fur bone deformity near joints in legs using the worm gear was developed for curing the difference angles in fracture bone and the lengthening bar for curing the difference length in fracture bone. Both experiments and FE analysis were performed to compare the elastic stiffness in several loading modes and to improve the functional external fixator system for the bone deformity. The FE model using the compressive and bending FE analysis was applied to the FE analysis due to the angle differences. The results show that the compressive stiffness value in experiment was 175.43N/mm; the bending stiffness value in experiment was 259.74N/mm; compressive stiffness value in FEM was 188.67N/mm; bending stiffness value in FEA was 285.71N/mm. The errors between experiments and FEA were less than 10%. The maximum stress (157MPa) to the angle of clamp was lower than the yield stress (176.4MPa) of SUS316L. The stiffnesses in both axial compressive and bending of the new fixator are about 2 times higher than other products except EBI (2003).

Development of a Functional External Fixator System for Bone Deformity near Joints in Legs (족관절 근위부 골교정용 기능성 체외고정장치 개발)

  • 전경진;이호중
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.1248-1251
    • /
    • 2004
  • The functional external fixator system for bone deformity near joints in legs using the worm gear was developed for curing the difference angles in fracture bone and the lengthening bar for curing the difference length in fracture bone. Both experiments and FE analysis were performed to compare the elastic stiffness in several loading modes and to improve the functional external fixator system for bone deformity near joints in legs. The FE model using the compressive and bending FE analysis was applied the FE analysis due to the angle differences. The results show that the compressive stiffness value in experiment was 175.43N/mm, the bending stiffness value in experiment was 259.74N/mm, compressive stiffness value in FEM was 188.67N/mm, bending stiffness value in FEA was 285.71N/mm. The errors between experiments and FEA were less than 10%. The maximum stress (157MPa) to the angle of clamp was lower than the yield stress (176.4MPa) of SUS316L. The stiffnesses in both axial compressive and bending of the new fixator are about 2 times higher than other products except EBI (2003).

  • PDF

Influence of Stiffness Coefficients on Optical Performance in Composite Optical Substrate (강성계수가 복합재 광학판 성능에 미치는 영향성 연구)

  • Kim, Kyung-Pyo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.11
    • /
    • pp.762-769
    • /
    • 2017
  • The extensional stiffness in quasi-isotropic laminates is uniform in the radial direction, but the bending stiffness varies radially due to the stacking sequence. This paper addresses the directional dependency of the bending stiffness and its radial variation in three types of quasi-isotropic laminate reflectors consisting of unidirectional fiber composite materials (UDM) and randomly distributed composite materials (short fiber, RDM). The extensional stiffness and bending stiffness in optical reflectors using RDM are uniform, while the bending stiffness in those using UDM varies radially from 11% to 26%. Also, the stiffness sensitivity, such as the bend-twist or bend-torsion effect, due to the differences in the stiffness value in the composite, is large. These factors are problematic in the optical field requiring precision surfaces. Utilizing RDM might be one way to eliminate the presence of bending stiffness in composite mirror substrates.

Investigation into characteristics of bending stiffness and failure for ISB panel (ISB 판넬의 굽힘강성 및 파단특성에 관한 연구)

  • 안동규;이상훈;김민수;한길영;정창균;양동열
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.1274-1277
    • /
    • 2004
  • The objective of this research work is to investigate into characteristics of bending stiffness and failure for the ISB ultra-lightweight panel with internally structured material. The expanded metal with a pyramid shape and woven metal are employed as an internally structured material. In order to investigate the characteristics, the specific stiffness and failure map are estimated using the results of three-points bending test. From the results of the experiment, the influence of design parameters of ISB panel on the specific stiffness and failure mode has been found. In addition, it has been shown that ISB panel with expanded metal is prefer to that with woven metal from the view point of optimal design for ISB panel.

  • PDF

Investigation into Characteristics of Bending Stiffness and Failure for ISB Panel (ISB 판넬의 굽힘강성 및 파손특성에 관한 연구)

  • Ahn Dong-Gyu;Lee Sang-Hoon;Kim Min-Su;Han Gil-Young;Jung Chang-Gyun;Yang Bong-Yol
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.9 s.174
    • /
    • pp.162-172
    • /
    • 2005
  • The objective of this research works is to investigate into characteristics of bending stiffness and failure for the ISB ultra-lightweight panel with internally structured material. The expanded metal with a crimped pyramid shape and woven metal are employed as an internally structured material. Through three-points bending test, the force-displacement curve and failure shape are obtained to examine the deformation pattern, characteristic data, such as maximum load, displacement at maximum load, etc, and failure pattern of the ISB panel. In addition, the influence of design parameters fur ISB panel on the specific stiffness, the specific stiffness per unit width, failure mode and failure map has been found. Finally, it has been shown that ISB containing expand metal with the crimped pyramidal shape is prefer to that containing woven metal from the view point of optimal design for ISB panel.