• Title/Summary/Keyword: benzothiophene

Search Result 14, Processing Time 0.019 seconds

Sonochemical Reaction Mechanism of a Polycyclic Aromatic Sulfur Hydrocarbon in Aqueous Phase

  • Kim, Il-Kyu;Jung, Oh-Jin
    • Bulletin of the Korean Chemical Society
    • /
    • v.23 no.7
    • /
    • pp.990-994
    • /
    • 2002
  • Hydroxybenzothiophenes, dihydroxy-benzothiophenes, and benzothiophenedione were identified as inter-mediates of benzothiophene (BT) exposed to ultrasonic irradiation. It is proposed that benzothiophene is oxidized by OH radical to sequentially for m hydroxybenzothiophenes, dihydroxybenzothiophenes, and benzothiophenedione. Benzothiophene is decomposed rapidly following pseudo-first-order kinetics in a first-order manner by ultrasonic irradiation in aqueous solution. The toxicity of sonochemically treated solutions was checked by E. coli and a less inhibition in bacterial respiration was observed from the 120-min treated benzothiophene sample than from the untreated benzothiophene sample. Also evolution of carbon dioxide and sulfite was observed during ultrasonic reaction. A pathway for ultrasonic decomposition of benzothiophene in aqueous solution is proposed.

Degradation of Benzothiophene by Potassium Ferrate(VI) (Potassium Ferrate(VI)를 이용한 Benzothiophene 분해특성 연구)

  • Lee, Kwon-Chul;Kim, Il-Kyu
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.25 no.5
    • /
    • pp.643-649
    • /
    • 2011
  • Degradation of benzothiophene(BT) in the aqueous phase by potassium ferrate(VI) was investigated. Potassium ferrate(VI) was prepared by the wet oxidation method. The degradation efficiency of BT was measured at various values of pH, ferrate(VI) dosage and initial concentration of BT. BT was degraded rapidly within 30 seconds by ferrate(VI). While the highest degradation efficiency was achieved at pH 5, the lowest degradation efficiency was achieved at pH 9. Also, the initial rate constant of BT increased with decreasing of the BT initial concentration. In addition, the intermediate analysis for the reaction of BT and ferrate(VI) has been conducted using GC-MS. Benzene, styrene, benzaldehyde, formaldehyde, benzoic acid, formic acid, and acetic acid were identified as reaction intermediates, and ${SO_4}^{2-}$ was identified as an end product.

Degradation of a Refractory Organic Contaminant by Photocatalytic Systems

  • Kim, Il-Kyu
    • Journal of Power System Engineering
    • /
    • v.18 no.6
    • /
    • pp.133-139
    • /
    • 2014
  • In this research, the photocatalytic degradation of benzothiophene in $TiO_2$ aqueous suspension has been studied. $TiO_2$ photocatalysts are prepared by a sol-gel method. The dominant anatase-structure on $TiO_2$ particles is observed after calcining the $TiO_2$ gel at $500^{\circ}C$ for 1hr. Photocatalysts with various transition metals (Nd, Pd and Pt) loading are tested to evaluate the effect of transition metal impurities on photodegradation. The photocatalytic degradation in most cases follows first-order kinetics. The maximum photodegradation efficiency is obtained with $TiO_2$ dosage of 0.4g/L. The photodegradation efficiency with Pt-$TiO_2$ is higher than pure $TiO_2$ powder. The optimal content value of Pt is 0.5wt.%. Also we investigate the applicability of $H_2O_2$ to increase the efficiency of the $TiO_2$ photocatalytic degradation of benzothiophene. The optimal concentration of $H_2O_2$ is 0.05. The effect of pH is investigated; we obtain the maximum photodegradation efficiency at pH 9. Hydroxy-benzothiophenes and dihydroxy-benzothiophenes are identified as reaction intermediates. It is proposed that benzothiophene is oxidized by OH radical to sequentially form hydroxyl-benzothiophenes, dihydroxybenzothiophenes, and benzothiophenedione.

Synthesis and Antimicrobial Activity of Oxazolone, Imidazolone and Triazine Derivatives Containing Benzothiophene

  • Naganagowda, Gadada;Petsom, Amorn
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.11
    • /
    • pp.3914-3922
    • /
    • 2011
  • 3-Chloro-1-benzothiophene-2-carbonyl chloride 1 was reacted with glycine in acetone to give 3-chloro-1-benzothiophen-2-yl-carbonylaminoacetic acid 2. Various aldehydes on treatment with compound 2 in acetic anhydride to gave 1,3-oxazol-5-ones 3a-d. These oxazolones was treated with aromatic amines or hydrazides to get various imidazol-4-ones 4a-t or 5a-l. Oxazolones 3a-d was also treated with aromatic hydrazines, expansion of five member oxazole ring to six member triazine ring occurs to yield 1,2,4-triazin-6-ones 6a-h. The structures of all the synthesized compounds were confirmed by spectral data and had been screened for antibacterial activity.

Synthesis and Antimicrobial Activity of Oxazolone, Imidazolone and Triazine Derivatives Containing Benzothiophene

  • Naganagowda, Gadada;Thamyongkit, Patchanita;Petsom, Amorn
    • Journal of the Korean Chemical Society
    • /
    • v.55 no.5
    • /
    • pp.794-804
    • /
    • 2011
  • 3-Chloro-1-benzothiophene-2-carbonylchloride (1) was allowed to react with glycine to give 3-chloro-1-benzothiophen-2-yl-carbonylaminoacetic acid (2). Various aldehydes were treated with compound (2) in acetic anhydride to get 1,3-oxazol-5-ones (3a-d). These oxazolones were treated with aromatic amines or hydrazides to get various imidazol-4-ones (4a-h or 5al) separately. Oxazolones was also treated with aromatic hydrazine, through which expansion of five membered oxazole ring to six member triazine ring occurs to yield 1,2,4-triazin-6-ones (6a-h). The structures of all the synthesized compounds were confirmed by spectral data and were screened for antibacterial and antifungal activities.

Synthesis of Novel Asymmetric Oligomers Based on Benzothiophene and OTFT Characteristics (벤조사이오펜을 기초로 한 새로운 비대칭형 올리고머의 합성과 OTFT 특성)

  • Lee, Dong-Hee;Park, Jong-Won;Chung, Dae-Sung;Park, Chan;Kim, Yun-Hi;Kwon, Soon-Ki
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.129-129
    • /
    • 2010
  • The conjugated oligomers with rigid and fused-ring structures are of interest for the solution-processable organic thin film transistors (OTFTs) due to their well defined structure and high purity. In this study, alkyl substituted benzothiophene based oligomers were synthesized by a novel route, the key point of which is the acid-induced intermolecular cyclization reaction of aromatic methyl sulfoxides, and were confirmed by $^1H$-NMR and FT-IR studies. The obtained oligomers showed the good solubility in common organic solvents such as hexane, chloroform, and dimethylchloride at room-temperature, which is due to the introduced alkyl chain. The physical and optical properties of the oligomers were studied using differential scanning scalorimetry (DSC), cyclic-voltammetry (CV), UV-visible and PL spectra studies. Solution processed OTFT device based on synthesized oligomers show a high hole mobility of up to $0.01\;cm^2V^{-1}s^{-1}$, $I_{on}/I_{off}$ of $10^5$ and threshold voltage of -14V.

  • PDF

Theoretical Study on Interactions between N-Butylpyridinium Nitrate and Thiophenic Compounds

  • Lu, Renqing;Liu, Dong;Wang, Shutao;Lu, Yukun
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.6
    • /
    • pp.1814-1822
    • /
    • 2013
  • By using density functional theory calculations, we have performed a systemic study on the electronic structures and topological properties of interactions between N-butylpyridinium nitrate ($[BPY]^+[NO_3]^-$) and thiophene (TS), benzothiophene (BT), dibenzothiophene (DBT), naphthalene (NAP). The most stable structure of $[BPY]^+[NO_3]^-$ ion pair indicates that hydrogen bonding interactions between oxygen atoms on $[NO_3]^-$ anion and C2-H2 on pyridinium ring play a dominating role in the formation of ion pair. The occurrence of hydrogen bonding, ${\pi}{\cdots}$H-C, and ${\pi}{\cdots}{\pi}$ interactions between $[BPY]^+[NO_3]^-$ and TS, BT, DBT, NAP has been corroborated at the molecular level. But hydrogen bonding and ${\pi}{\cdots}{\pi}$ interactions between $[BPY]^+[NO_3]^-$ and NAP are weak in terms of structural properties and NBO, AIM analyses. DBT is prior to adsorption on N-butylpyridinium nitrate ionic liquid.

Effects of Blended TIPS-pentacene:ph-BTBT-10 Organic Semiconductors on the Photoresponse Characteristics of Organic Field-effect Transistors (TIPS-pentacene:ph-BTBT-10 혼합 유기반도체가 유기전계효과트랜지스터 광반응 특성에 미치는 영향)

  • Chae Min Park;Eun Kwang Lee
    • Clean Technology
    • /
    • v.30 no.1
    • /
    • pp.13-22
    • /
    • 2024
  • In this study, blended 6,13-Bis(triisopropylsilylethynyl)pentacene (TP):2-Decyl-7-phenyl[1]benzothieno[3,2-b][1] benzothiophene (BT):Poly styrene (PS) TFT at different ratios were explored for their potential application as light absorption sensors. Due to the mixing of BT, both off current reduction and on/off ratio improvement were achieved at the same time. In particular, the TP:BT:PS (1:0.25:1 w/w) sample showed excellent light absorption characteristics, which proved that it is possible to manufacture a high-performance light absorption device. Through analysis of the crystal structure and electrical properties of the various mixing ratios, it was confirmed that the TP:BT:PS (1:0.25:1 w/w) sample was optimal. The results of this study outline the expected effects of this innovation not only for the development of light absorption devices but also for the development of mixed organic semiconductor (OSC) optoelectronic systems. Through this study, the potential to create a multipurpose platform that overcomes the limitations of using a single OSC and the potential to fabricate a high-performance OSC TFT with a fine-tuned optical response were confirmed.