• Title/Summary/Keyword: biased noise

Search Result 76, Processing Time 0.031 seconds

Recursive Estimation of Biased Zero-Error Probability for Adaptive Systems under Non-Gaussian Noise (비-가우시안 잡음하의 적응 시스템을 위한 바이어스된 영-오차확률의 반복적 추정법)

  • Kim, Namyong
    • Journal of Internet Computing and Services
    • /
    • v.17 no.1
    • /
    • pp.1-6
    • /
    • 2016
  • The biased zero-error probability and its related algorithms require heavy computational burden related with some summation operations at each iteration time. In this paper, a recursive approach to the biased zero-error probability and related algorithms are proposed, and compared in the simulation environment of shallow water communication channels with ambient noise of biased Gaussian and impulsive noise. The proposed recursive method has significantly reduced computational burden regardless of sample size, contrast to the original MBZEP algorithm with computational complexity proportional to sample size. With this computational efficiency the proposed algorithm, compared with the block-processing method, shows the equivalent robustness to multipath fading, biased Gaussian and impulsive noise.

Blind Algorithms using a Random-Symbol Set under Biased Impulsive Noise (바이어스 된 충격성 잡음 하에서 랜덤 심볼 열을 이용한 블라인드 알고리듬)

  • Kim, Namyong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.4
    • /
    • pp.1951-1956
    • /
    • 2013
  • Distribution-matching type algorithms based on a set of symbols generated in random order provide a limited performance under biased impulsive noise since the performance criterion for the algorithms has no variables for biased signal. For the immunity against biased impulsive noise, we propose, in this paper, a modified performance criterion and derived related blind algorithms based on augmented filter structures and the distribution-matching method using a set of random symbols. From the simulation results, the proposed algorithm based on the proposed criterion yielded superior convergence performance undisturbed by the strong biased impulsive noise.

The performance analysis of SA fitters for images corrupted by biased noise (비대칭 노이즈 영상에서 SA 필터의 성능 분석)

  • Song, Jong-Kwan
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.2
    • /
    • pp.362-368
    • /
    • 2009
  • The SA filters encompass a large class of filters based on order statistics as well as linear FIR filters. The class of SA filters is defined as a multi-stage filters whose output is linear combination of nonlinear(minimum, maximum, exclusive-OR) sub-filter outputs. According to the lust stage nonlinear sub-filters, SA filters are called SAMAX, SAMIN, and SAXOR filters. In this paper, optimal SAMAX and SAMED filters are designed for images corrupted by biased noise. The performance analysis of this experiment shows that SAMAX filters outperforms SAMED filters for biased noise. In the case of un-biased noise, the SAMAX and SAMED filters give the same performance. This result leads us to a new guideline in the application of SA filters.

Distance Measure for Biased Probability Density Functions and Related Equalizer Algorithms for Non-Gaussian Noise (편이 확률밀도함수 사이의 거리측정 기준과 비 가우시안 잡음 환경을 위한 등화 알고리듬)

  • Kim, Namyong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37A no.12
    • /
    • pp.1038-1042
    • /
    • 2012
  • In this paper, a new distance measure for biased PDFs is proposed and a related equalizer algorithm is also derived for supervised adaptive equalization for multipath channels with impulsive and time-varying DC bias noise. From the simulation results in the non-Gaussian noise environments, the proposed algorithm has proven not only robust to impulsive noise but also to have the capability of cancelling time-varying DC bias noise effectively.

Information Potential and Blind Algorithms Using a Biased Distribution of Random-Order Symbols (랜덤 심볼열의 바이어스된 분포를 이용한 정보 포텐셜과 블라인드 알고리즘)

  • Kim, Namyong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38A no.1
    • /
    • pp.26-32
    • /
    • 2013
  • Blind algorithms based on Information potential of output samples and a set of symbols generated in random order at the receiver go through performance degradation when biased impulsive noise is added to the channel since the cost function composed of information potentials has no variable to deal with biased signal. Aiming at the robustness against biased impulsive noise, we propose, in this paper, a modified information potential, and derived related blind algorithms based on augmented filter structures and a set of random-order symbols. From the simulation results of blind equalization for multipath channels, the blind algorithm based on the proposed information potential produced superior convergence performance in the environments of strong biased impulsive noise.

Biased SNR Estimation using Pilot and Data Symbols in BPSK and QPSK Systems

  • Park, Chee-Hyun;Hong, Kwang-Seok;Nam, Sang-Won;Chang, Joon-Hyuk
    • Journal of Communications and Networks
    • /
    • v.16 no.6
    • /
    • pp.583-591
    • /
    • 2014
  • In wireless communications, knowledge of the signal-to-noise ratio is required in diverse communication applications. In this paper, we derive the variance of the maximum likelihood estimator in the data-aided and non-data-aided schemes for determining the optimal shrinkage factor. The shrinkage factor is usually the constant that is multiplied by the unbiased estimate and it increases the bias slightly while considerably decreasing the variance so that the overall mean squared error decreases. The closed-form biased estimators for binary-phase-shift-keying and quadrature phase-shift-keying systems are then obtained. Simulation results show that the mean squared error of the proposed method is lower than that of the maximum likelihood method for low and moderate signal-to-noise ratio conditions.

Blind Signal Processing for Medical Sensing Systems with Optical-Fiber Signal Transmission

  • Kim, Namyong;Byun, Hyung-Gi
    • Journal of Sensor Science and Technology
    • /
    • v.23 no.1
    • /
    • pp.1-6
    • /
    • 2014
  • In many medical image devices, dc noise often prevents normal diagnosis. In wireless capsule endoscopy systems, multipath fading through indoor wireless links induces inter-symbol interference (ISI) and indoor electric devices generate impulsive noise in the received signal. Moreover, dc noise, ISI, and impulsive noise are also found in optical fiber communication that can be used in remote medical diagnosis. In this paper, a blind signal processing method based on the biased probability density functions of constant modulus error that is robust to those problems that can cause error propagation in decision feedback (DF) methods is presented. Based on this property of robustness to error propagation, a DF version of the method is proposed. In the simulation for the impulse response of optical fiber channels having slowly varying dc noise and impulsive noise, the proposed DF method yields a performance enhancement of approximately 10 dB in mean squared error over its linear counterpart.

Euclidean Distance of Biased Error Probability for Communication in Non-Gaussian Noise (비-가우시안 잡음하의 통신을 위한 바이어스된 오차 분포의 유클리드 거리)

  • Kim, Namyong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.3
    • /
    • pp.1416-1421
    • /
    • 2013
  • In this paper, the Euclidean distance between the probability density functions (PDFs) for biased errors and a Dirac-delta function located at zero on the error axis is proposed as a new performance criterion for adaptive systems in non-Gaussian noise environments. Also, based on the proposed performance criterion, a supervised adaptive algorithm is derived and applied to adaptive equalization in the shallow-water communication channel distorted by severe multipath fading, impulsive and DC-bias noise. The simulation results compared with the performance of the existing MEDE algorithm show that the proposed algorithm yields over 5 dB of MSE enhancement and the capability of relocating the mean of the error PDF to zero on the error axis.

Information Potential with Shifted Symbol Points and Related Blind Equalizer Algorithms (심볼점 평행이동 기능을 지닌 정보 포텐셜과 블라인드 등화 알고리듬)

  • Kim, Namyong
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.2
    • /
    • pp.3-10
    • /
    • 2013
  • Please In this paper, to cope with biased impulsive noise problems, a new information potential is proposed that can move the transmitted symbol points by modifying the information potential designed with Dirac-delta functions. Based on the proposed information potential a new blind algorithm is derived by employing an augmented filter structure. From the simulation results in the environment of biased impulsive noise, the conventional algorithms yield performance degradation by over 15 dB, but the proposed algorithm shows no performance degradation and holds the same steady state MSE of below -25 dB as after the initial convergence regardless of the channel conditions.

Noise-Biased Compensation of Minimum Statistics Method using a Nonlinear Function and A Priori Speech Absence Probability for Speech Enhancement (음질향상을 위해 비선형 함수와 사전 음성부재확률을 이용한 최소통계법의 잡음전력편의 보상방법)

  • Lee, Soo-Jeong;Lee, Gang-Seong;Kim, Sun-Hyob
    • The Journal of the Acoustical Society of Korea
    • /
    • v.28 no.1
    • /
    • pp.77-83
    • /
    • 2009
  • This paper proposes a new noise-biased compensation of minimum statistics(MS) method using a nonlinear function and a priori speech absence probability(SAP) for speech enhancement in non-stationary noisy environments. The minimum statistics(MS) method is well known technique for noise power estimation in non-stationary noisy environments. It tends to bias the noise estimate below that of true noise level. The proposed method is combined with an adaptive parameter based on a sigmoid function and a priori speech absence probability (SAP) for biased compensation. Specifically. we apply the adaptive parameter according to the a posteriori SNR. In addition, when the a priori SAP equals unity, the adaptive biased compensation factor separately increases ${\delta}_{max}$ each frequency bin, and vice versa. We evaluate the estimation of noise power capability in highly non-stationary and various noise environments, the improvement in the segmental signal-to-noise ratio (SNR), and the Itakura-Saito Distortion Measure (ISDM) integrated into a spectral subtraction (SS). The results shows that our proposed method is superior to the conventional MS approach.