• Title/Summary/Keyword: binding interactions

Search Result 450, Processing Time 0.025 seconds

Quantitative Frameworks for Multivalent Macromolecular Interactions in Biological Linear Lattice Systems

  • Choi, Jaejun;Kim, Ryeonghyeon;Koh, Junseock
    • Molecules and Cells
    • /
    • v.45 no.7
    • /
    • pp.444-453
    • /
    • 2022
  • Multivalent macromolecular interactions underlie dynamic regulation of diverse biological processes in ever-changing cellular states. These interactions often involve binding of multiple proteins to a linear lattice including intrinsically disordered proteins and the chromosomal DNA with many repeating recognition motifs. Quantitative understanding of such multivalent interactions on a linear lattice is crucial for exploring their unique regulatory potentials in the cellular processes. In this review, the distinctive molecular features of the linear lattice system are first discussed with a particular focus on the overlapping nature of potential protein binding sites within a lattice. Then, we introduce two general quantitative frameworks, combinatorial and conditional probability models, dealing with the overlap problem and relating the binding parameters to the experimentally measurable properties of the linear lattice-protein interactions. To this end, we present two specific examples where the quantitative models have been applied and further extended to provide biological insights into specific cellular processes. In the first case, the conditional probability model was extended to highlight the significant impact of nonspecific binding of transcription factors to the chromosomal DNA on gene-specific transcriptional activities. The second case presents the recently developed combinatorial models to unravel the complex organization of target protein binding sites within an intrinsically disordered region (IDR) of a nucleoporin. In particular, these models have suggested a unique function of IDRs as a molecular switch coupling distinct cellular processes. The quantitative models reviewed here are envisioned to further advance for dissection and functional studies of more complex systems including phase-separated biomolecular condensates.

Molecular Modeling of the Subtype Dopamine Receptor-ligand Interactions

  • Baek, Minkyung;Shin, Woong-Hee
    • Proceeding of EDISON Challenge
    • /
    • 2013.04a
    • /
    • pp.13-24
    • /
    • 2013
  • Dopamine agonists and antagonists and its receptor play a critical role in the information transfer in the nervous system, and dopamine receptor-ligands interactions are deeply related to Parkinson's disease, schizophrenia and some other mental diseases. However, the only experimental 3D structure available for dopamine receptors is human D3 dopamine receptor. Therefore, it is important to create model of subtype dopamine receptor-ligands interactions. We report here the 3D structures of the human D1 and D2 dopamine receptor predicted by using GalaxyTBM, and its predicted binding site determined by using GalaxyDock. The highly conserved Asp on TM 3 and Phe on TM 6 have critical role in ligand binding. Also, highly conserved serines on TM 5 are essential for binding agonists and some kinds of antagonists. We identify differences between binding sites of agonists and antagonists of human D1 and D2 dopamine receptor, and find the reasons of selective binding of antagonists.

  • PDF

Drug Diomacromolecule interaction IX

  • Kim, Chong-Kook;Won, Young-Han;Kim, Sang-Nim
    • Archives of Pharmacal Research
    • /
    • v.7 no.2
    • /
    • pp.95-99
    • /
    • 1984
  • Binding of sulfaethidole to bovine serum albumin (BSA) was studied by circular dichroism. The effects of pH and ionic strength on the binding of sulfaethidole to BSA were investigated. It was found that one primary binding site on the BSAM was capable of inducing optical activity in the presence of sulfaethidole. Enhancement of the induced ellipticity of sulfaethidole upon addition to BSA was not much affected by the change of pH and ionic strength. Taking the effects of pH and ionic strength into consideration, it seems that the binding of sulfaethidole to BSA was not much affected by electrostatic and ionic interactions. Therefore, it might be assumed that the binding was mainly due to the hydrophobic interactions. Sulfaethidole seems to be a reasonable CD probe for the study of hydrophobic drug interactions.

  • PDF

Understanding Drug-Protein Interactions in Escherichia coli FabI and Various FabI Inhibitor Complexes

  • Lee, Han-Myoung;Singh, N. Jiten
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.1
    • /
    • pp.162-168
    • /
    • 2011
  • Many ligands have been experimentally designed and tested for their activities as inhibitors against bacterial enoyl-ACP reductase (FabI), ENR. Here the binding energies of the reported ligands with the E. coli ENR-$NAD^+$ were calculated, analyzed and compared, and their molecular dynamics (MD) simulation study was performed. IDN, ZAM and AYM ligands were calculated to have larger binding energies than TCL and IDN has the largest binding energy among the considered ligands (TCL, S54, E26, ZAM, AYM and IDN). The contribution of residues to the ligand binding energy is larger in E. coli ENR-NAD+-IDN than in E. coli ENR-$NAD^+$-TCL, while the contribution of $NAD^+$ is smaller for IDN than for TCL. The large-size ligands having considerable interactions with residues and $NAD^+$ have many effective functional groups such as aromatic $\pi$ rings, acidic hydroxyl groups, and polarizable amide carbonyl groups in common. The cation-$\pi$ interactions have large binding energies, positively charged residues strongly interact with polarisable amide carbonyl group, and the acidic phenoxyl group has strong H-bond interactions. The residues which have strong interactions with the ligands in common are Y146, Y156, M159 and K163. This study of the reported inhibitor candidates is expected to assist the design of feasible ENR inhibitors.

Detection and Kinetics of Mucosal Pathogenic Bacteria Binding with Polysaccharides

  • Chung, Kyong-Hwan;Park, Jung-Soon;Hwang, Hyun-Soo;Kim, Jin-Chul;Lee, Ki-Young
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.7
    • /
    • pp.1191-1197
    • /
    • 2007
  • The detection and kinetics of mucosal pathogenic bacteria binding on polysaccharide ligands were studied using a surface plasmon resonance biosensor. The kinetic model applied curve-fitting to the experimental surface plasmon resonance sensorgrams to evaluate the binding interactions. The kinetic parameters for the mucosal pathogenic bacteria (Pseudomonas aeruginosa, Pseudomonas fluorescens, Serratia marcescens) with the alginate ligand were determined from a kinetic model. In addition, the binding interactions of the mucosal pathogenic bacteria with polysaccharide binding pairs (Pseudomonas aeruginosa/alginate, Streptococcus pneumoniae/pneumococcal polysaccharide, Staphylococcus aureus/pectin) were also compared with their kinetic parameters. The rate constants of association for Pseudomonas aeruginosa with the alginate ligand were higher than those for Pseudomonas fluorescens. Serratia marcescens had no detectable interaction with the alginate ligand. The adhesion affinity of Pseudomonas aeruginosa with alginate was higher than that for the other binding pairs. The binding affinities of the pathogenic bacteria with their own polysaccharide were higher than that of Staphylococcus aureus with pectin. Measuring the contact angle was found to be a feasible method for detecting binding interactions between analytes and ligands.

An Algorithm for Predicting Binding Sites in Protein-Nucleic Acid Complexes

  • Han, Nam-Shik;Han, Kyung-Sook
    • Proceedings of the Korean Society for Bioinformatics Conference
    • /
    • 2003.10a
    • /
    • pp.17-25
    • /
    • 2003
  • Determining the binding sites in protein-nucleic acid complexes is essential to the complete understanding of protein-nucleic acid interactions and to the development of new drugs. We have developed a set of algorithms for analyzing protein-nucleic acid interactions and for predicting potential binding sites in protein-nucleic acid complexes. The algorithms were used to analyze the hydrogen-bonding interactions in protein-RNA and protein-DNA complexes. The analysis was done both at the atomic and residue level, and discovered several interesting interaction patterns and differences between the two types of nucleic acids. The interaction patterns were used for predicting potential binding sites in new protein-RNA complexes.

  • PDF

Characterization of Ca2+-Dependent Protein-Protein Interactions within the Ca2+ Release Units of Cardiac Sarcoplasmic Reticulum

  • Rani, Shilpa;Park, Chang Sik;Sreenivasaiah, Pradeep Kumar;Kim, Do Han
    • Molecules and Cells
    • /
    • v.39 no.2
    • /
    • pp.149-155
    • /
    • 2016
  • In the heart, excitation-contraction (E-C) coupling is mediated by $Ca^{2+}$ release from sarcoplasmic reticulum (SR) through the interactions of proteins forming the $Ca^{2+}$ release unit (CRU). Among them, calsequestrin (CSQ) and histidine-rich $Ca^{2+}$ binding protein (HRC) are known to bind the charged luminal region of triadin (TRN) and thus directly or indirectly regulate ryanodine receptor 2 (RyR2) activity. However, the mechanisms of CSQ and HRC mediated regulation of RyR2 activity through TRN have remained unclear. We first examined the minimal KEKE motif of TRN involved in the interactions with CSQ2, HRC and RyR2 using TRN deletion mutants and in vitro binding assays. The results showed that CSQ2, HRC and RyR2 share the same KEKE motif region on the distal part of TRN (aa 202-231). Second, in vitro binding assays were conducted to examine the $Ca^{2+}$ dependence of protein-protein interactions (PPI). The results showed that TRN-HRC interaction had a bell-shaped $Ca^{2+}$ dependence, which peaked at pCa4, whereas TRN-CSQ2 or TRN-RyR2 interaction did not show such $Ca^{2+}$ dependence pattern. Third, competitive binding was conducted to examine whether CSQ2, HRC, or RyR2 affects the TRN-HRC or TRN-CSQ2 binding at pCa4. Among them, only CSQ2 or RyR2 competitively inhibited TRN-HRC binding, suggesting that HRC can confer functional refractoriness to CRU, which could be beneficial for reloading of $Ca^{2+}$ into SR at intermediate $Ca^{2+}$ concentrations.

High-Contrast Imaging of Biomolecular Interactions Using Liquid Crystals Supported on Roller Printed Protein Surfaces

  • Park, Min-Kyung;Jang, Chang-Hyun
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.10
    • /
    • pp.3269-3273
    • /
    • 2012
  • In this study, we report a new method for the high contrast imaging of biomolecular interactions at roller printed protein surfaces using thermotropic liquid crystals (LCs). Avidin was roller printed and covalently immobilized onto the obliquely deposited gold surface that was decorated with carboxylic acid-terminated self-assembled monolayers (SAMs). The optical response of LCs on the roller printed film of avidin contrasted sharply with that on the obliquely deposited gold surface. The binding of biotin-peroxidase to the roller printed avidin was then investigated on the obliquely deposited gold substrate. LCs exhibited a non-uniform and random orientation on the roller printed area decorated with the complex of avidin and biotin-peroxidase, while LCs displayed a uniform and planar orientation on the area without roller printed proteins. The orientational transition of LCs from uniform to non-uniform state was triggered by the erasion of nanometer-scale topographies on the roller printed surface after the binding of biotin-peroxidase to the surface-immobilized avidin. The specific binding events of protein-receptor interactions were also confirmed by atomic force microscopy and ellipsometry. These results demonstrate that the roller printing of proteins on obliquely deposited gold substrates could provide a high contrast signal for imaging biomolecular interactions using LC-based sensors.

Combining the Power of Advanced Proteome-wide Sample Preparation Methods and Mass Spectrometry for defining the RNA-Protein Interactions

  • Liu, Tong;Xia, Chaoshuang;Li, Xianyu;Yang, Hongjun
    • Mass Spectrometry Letters
    • /
    • v.13 no.4
    • /
    • pp.115-124
    • /
    • 2022
  • Emerging evidence has shown that RNA-binding proteins (RBPs) dynamically regulate all aspects of RNA in cells and involve in major biological processes of RNA, including splicing, modification, transport, transcription and degradation. RBPs, as powerful and versatile regulatory molecule, are essential to maintain cellular homeostasis. Perturbation of RNA-protein interactions and aberration of RBPs function is associated with diverse diseases, such as cancer, autoimmune disease, and neurological disorders. Therefore, it is crucial to systematically investigate the RNA-binding proteome for understanding interactions of RNA with proteins. Thanks to the development of the mass spectrometry, a variety of proteome-wide methods have been explored to define comprehensively RNA-protein interactions in recent years and thereby contributed to speeding up the study of RNA biology. In this review, we systematically described these methods and summarized the advantages and disadvantages of each method.

Molecular Docking of Tetrahydrofuran-2-yl Analogues to Porcine Odorant Binding Proteins (pOBP & pPBP) and Binding Interactions (돼지 냄새물질 결합 단백질 (pOBP 및 pPBP)에 대한 Tetrahydrofuran-2-yl 유도체의 분자도킹과 결합 상호작용)

  • Cho, Yun-Gi;Park, Chang-Sik;Sung, Nack-Do
    • Reproductive and Developmental Biology
    • /
    • v.34 no.1
    • /
    • pp.7-13
    • /
    • 2010
  • The binding affinity constants ($p(Od)_{50}$) and molecular docking scores (OS) between porcine odorant binding proteins pOBP (1HQP) and pPBP (1GM6) as receptor and a series of tetrahydrofuran-2-yl (A & B) analogues as substrate, and their interactions were discussed quantitatively using three-dimensional quantitative structure-activity relationship (30-QSAR) models. The statistical qualities of the optimized CoMF A models for pOBP were better than those of the CoMSIA models. The binding affinity constants and OS between substrate and receptor molecules were dependent upon steric and hydrophobic interaction. The DS constants of the substrates into the binding site of OBP (1HQP) were bigger than those of PBP (1GM6). The resulting contour maps produced by the optimized CoMFA model were used to identify the structural features relevant to the binding affinity in binding site of pOBP.