• Title/Summary/Keyword: binding number

Search Result 526, Processing Time 0.028 seconds

Drug-Biomacromolecule Interaction XII: Comparative binding study of sulfaethidole to bovine serum albumin by equilibrium dialysis, fluorescence probe technique, uv difference spectrophotometry and circular dichroism

  • Kim, Chong-Kook;Chun, Yang-Sook;Lah, Woon-Lyong
    • Archives of Pharmacal Research
    • /
    • v.12 no.3
    • /
    • pp.160-165
    • /
    • 1989
  • Binding of sulfaethidole to bovine serum albumin was studied by equilibrium dialysis, fluorescence probe technique, uv difference spectrophotometry and circular dichroism. Equilibrium dialysis method enabled us to estimate the total number of drug binding sites of albumin molecule. For sulfaethidole, albumin had 6 primary and 40 secondary binding sites. The primary and secondary binding constants were 0.9 * 10/sup 5/ M/sup -1/ and 0.2 * 10/sup 6/ M/sup -1/, respectivitely. 1-Anilino-8-naphthalenesulfonate (ANS) and 2-(4-hydroxylbenzeneazo)- benzoic acid (HBAB) were used as the fluorescence probe and the uv spectrophotometric probe, respectively. In fluorescence probe technique, results indicated that the number of higher affinity drug binding site of albumin was 1 and the number of lower affinity drug binding sites of albumin was 3, and the primary and secondary drug binding constants for bovine serum albumin were 2.15 * 10/sup 5/M/sup -1/ and 1.04 * 10/sup 5/ M/sup -1/, respectively. In uv difference spectrophotometry, binding sites were 3 and binding constant was 1.88 * 10/sup 5/M/sup -1/. The above spectrophotometry, binding sites were 3 and binding constant was 1.88 * 10/sup 5/M/sup -1/. The above results suggest that several different methods should be used in ompensation for insufficient information about drug binding to albumin molecule given by only one method.

  • PDF

BINDING NUMBER CONDITIONS FOR (a, b, k)-CRITICAL GRAPHS

  • Zhou, Sizhong
    • Bulletin of the Korean Mathematical Society
    • /
    • v.45 no.1
    • /
    • pp.53-57
    • /
    • 2008
  • Let G be a graph, and let a, b, k be integers with $0{\leq}a{\leq}b,k\geq0$. Then graph G is called an (a, b, k)-critical graph if after deleting any k vertices of G the remaining graph of G has an [a, b]-factor. In this paper, the relationship between binding number bind(G) and (a, b, k)-critical graph is discussed, and a binding number condition for a graph to be (a, b, k)-critical is given.

SOME RESULTS ON BINDING NUMBER AND FRACTIONAL PERFECT MATCHING

  • Zhu, Yan;Liu, Guizhen
    • Journal of applied mathematics & informatics
    • /
    • v.25 no.1_2
    • /
    • pp.339-344
    • /
    • 2007
  • The relationships between binding number and fractional edge (vertex)-deletability or fractional k-extendability of graphs are studied. Furthermore, we show that the result about fractional vertex-deletability are best possible.

Effect of Glycyrrhizic Acid on Protein Binding of Diltiazem, Verapamil, and Nifedipine

  • Lee, Kyoung-Jin;Park, Hye-Jeong;Shin, Young-Hee;Lee, Chi-Ho
    • Archives of Pharmacal Research
    • /
    • v.27 no.9
    • /
    • pp.978-983
    • /
    • 2004
  • The effects of glycyrrhizic acid (GLZ) on protein binding of diltiazem, verapamil, and nifedipine were investigated. Protein binding studies (human serum, human serum albumin (HSA) and (X1-acid glycoprotein (AAG)) were conducted using the equilibrium dialysis method with and without addition of GLZ. The binding parameters, such as the number of moles of bound drug per mole of protein, the number of binding sites per protein molecule, and the association con-stant, were estimated using the Scatchard plot. The serum binding of nifedipine, verapamil, and diltiazem was displaced with addition of GLZ, and the decreases of Ks for serum were observed. GLZ decreased the association constants of three drugs for HSA and AAG, while the binding capacity remained similar with addition of GLZ. Although the characteristics of interaction were not clear, GLZ seemed to mainly affect HSA binding of nifedipine rather than AAG binding, while GLZ seemed to affect both AAG- and HSA-bindings of verapamil and dilt-iazem resulting in a serum binding displacement.

Drug-Biomacromolecule Interaction VIII

  • Kim, Chong-Kook;Yang, Ji-Sun;Lim, Yun-Su
    • Archives of Pharmacal Research
    • /
    • v.7 no.2
    • /
    • pp.87-93
    • /
    • 1984
  • The effects of ionic strength and pH on the binding of cefazolin to bovine serum albumin (BSA) were studied by UV difference spectrophotometry. As ionic strength at constant pH and temperature increases, the apparent bining constant decreased but the number of binding sites remained almost constant at 2. The constancy of the number of binding sites with increasing the ionic strength suggests that purely electrostatic forces between BSA and drug do not have great importance in the drug binding, even though there is a decrease in the apparent binding constant. Thus, the effect of ionic strength on the interaction between drug and BSA may be explained by the changes in ionic atmosphere of the aggregated BSA molecules and competitive inhibition by phosphate ions. In addition, the higher apparent binding constant at high ionic strength is explained by conformational changes of BSA from its aggregate forms into subunits. The pH effects on the afinity of interactions indicated that the binding affinity of cefazoline is higher in the neutral region than in the alkaline region. An d at high pH value, the number of binding sites decreased from 2 to 1 because of the conformational change of BSA in the alkaline region.

  • PDF

Lifetime Assignment Schemes for Dynamic Binding Update in Mobile IPv6 (Mobile IPv6 환경에서 동적 바인딩 갱신을 위한 라이프타임 할당 기법)

  • 양순옥;송의성;길준민;김성석;황종선
    • Journal of KIISE:Information Networking
    • /
    • v.31 no.1
    • /
    • pp.27-36
    • /
    • 2004
  • Frequent occurrence of binding update messages may incur high overhead in Mobile IP supporting users mobility. Thus, it needs to develop algorithms to deal with the situation. In this paper, we propose new lifetime assignment schemes for dynamic binding update considering the locality property related with mobile node's movement. Each mobile node maintains a profile which is based on log containing useful information about its visiting subnets. That is, it determines dynamic binding update lifetime for currently visiting subnet by computing past mean resident time recorded in the profile. In addition, we note that the resident time depends on the time when each node enters a subnet and thus, we devise another lifetime assignment algorithm. Extensive experiments are made to compare our schemes with existing Mobile IPv6 where major facts for performance comparison are both the number of binding update messages and the number of binding request messages. From the results, we come to know that our schemes obtain highly considerable performance improvements in terms of communication cost by decreasing the number of those messages.

BINDING NUMBERS AND FRACTIONAL (g, f, n)-CRITICAL GRAPHS

  • ZHOU, SIZHONG;SUN, ZHIREN
    • Journal of applied mathematics & informatics
    • /
    • v.34 no.5_6
    • /
    • pp.435-441
    • /
    • 2016
  • Let G be a graph, and let g, f be two nonnegative integer-valued functions defined on V (G) with g(x) ≤ f(x) for each x ∈ V (G). A graph G is called a fractional (g, f, n)-critical graph if after deleting any n vertices of G the remaining graph of G admits a fractional (g, f)-factor. In this paper, we obtain a binding number condition for a graph to be a fractional (g, f, n)-critical graph, which is an extension of Zhou and Shen's previous result (S. Zhou, Q. Shen, On fractional (f, n)-critical graphs, Inform. Process. Lett. 109(2009)811-815). Furthermore, it is shown that the lower bound on the binding number condition is sharp.

Drug-Biomacromolecule Interaction (XIII)-Effect of ionic Strength, pH and Temperature on Binding of Cephalothin to Bovine Serum Albumin- (약물과 생체고분자 간의 상호작용(제 13보)-세파로친과 소혈청알부민의 결합에 미치는 이온강도, pH 및 온도의 영향)

  • Kim, Chong-Kook;Lim, Yun-Su;Yang, Ji-Sun;Jeong, Eun-Ju
    • Journal of Pharmaceutical Investigation
    • /
    • v.19 no.3
    • /
    • pp.163-171
    • /
    • 1989
  • To investigate the protein binding characteristics of cephalothin, the effects of ionic strength, pH and temperature on the binding of cephalothin to bovine serum albumin (BSA) were studied by UV difference spectrophotometric method. With increasing ionic strength at constant PH and temperature, association constant decreased, but the number of binding sites sites was about 2 constantly. It may be deduced that the binding process is not only due to electrostatic forces. And the increased association constant at high ionic strength is explained by conformational changes of BSA from complex to subunits. The pH effect on the affinity of interaction indicated that the binding affinity of drug is higher in the neutral region than in the alkaline region. And, at high pH value, the number of binding sites decreased from 2 to 1 because of the conformational changes of BSA in alkaline region. The decrease in binding affinity of BSA to drug with increasing temperature was characteristic of an exothermic reaction. And the negative sign of ${\Delta}G^{\circ}$ meant that the binding process occurs spontaneously under the experimental conditions. In cephalothin-BSA complex formation, since the net enthalpy change value and entropy change value are positive, it is assumed that hydrophobic bindings are predominant in this binding process.

  • PDF

Cytochrome c Peroxidase: A Model Heme Protein

  • Erman, James E.;Vitello, Lidia B.
    • BMB Reports
    • /
    • v.31 no.4
    • /
    • pp.307-327
    • /
    • 1998
  • Cytochrome c peroxidase (CcP) is a yeast mitochondrial enzyme which catalyzes the reduction of hydrogen peroxide to water using two equivalents of ferrocytochrome c. The CcP/cytochrome c system has many features which make it a very useful model for detailed investigation of heme protein structure/function relationships including activation of hydrogen peroxide, protein-protein interactions, and long-range electron transfer. Both CcP and cytochrome c are single heme, single subunit proteins of modest size. High-resolution crystallographic structures of both proteins, of one-to-one complexes of the two proteins, and a number of active-site mutants are available. Site-directed mutagenesis studies indicate that the distal histidine in CcP is primarily responsible for rapid utilization of hydrogen peroxide implying significantly different properties of the distal histidine in the peroxidases compared to the globins. CcP and cytochrome c bind to form a dynamic one-to-one complex. The binding is largely electrostatic in nature with a small, unfavorable enthalpy of binding and a large positive entropy change upon complex formation. The cytochrome c-binding site on CcP has been mapped in solution by measuring the binding affinities between cytochrome c and a number of CcP surface mutations. The binding site for cytochrome c in solution is consistent with the crystallographic structure of the one-to-one complex. Evidence for the involvement of a second, low-affinity cytochrome c-binding site on CcP in long-range electron transfer between the two proteins is reviewed.

  • PDF

Expression, Purification and Characterization of the BLM binding region of human Fanconi Anemia Group J Protein

  • Yeom, Kyuho;Park, Chin-Ju
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.20 no.1
    • /
    • pp.22-26
    • /
    • 2016
  • FANCJ is a DNA helicase which contributes genome stability by resolving G-quadruplex DNA from 5' to 3' direction. In addition to main ATPase helicase core, FANCJ has the protein binding region at its C-terminal part. BRCA1 and BLM are the binding partner of FANCJ and these protein-protein interactions contribute genomic stability and the proper response to replication stress. As the first attempt for studying FANCJ-BLM interaction, we prepared BLM binding region of FANCJ and characterized with CD and NMR spectroscopy. FANCJ (881-941) with N-ter 6xHis was purified as the oligomer. Secondary structure prediction based on CD data revealed that FANCJ (881-941) composed with ${\beta}$ sheet, turn and coils.$^1H-^{15}N$ HSQC spectra showed nonhomogeneous peak intensities with less number of peaks comparing than the number of amino acids in the construct. It indicated that optimization should be necessary for detailed further structural studies.