• Title/Summary/Keyword: bio-nano-crystallization

Search Result 5, Processing Time 0.025 seconds

Crystallization of amorphous Si by pulse annealing with Ni ferritins

  • Tojo, Yosuke;Miura, Atsushi;Fuyuki, Takashi;Yamashita, Ichiro;Uraoka, Yukiharu
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.553-556
    • /
    • 2009
  • We investigated an application of supramolecular protein, and demonstrated the metal induced lateral crystallization utilizing ferritins with Ni nanoparticles, named the "bio-nano-crystallization". So far, this method has required long time, because of this method condition based on the conventional solid phase crystallization. In this study, we applied the pulsed rapid thermal annealing to bio-nanocrystallization. As a result, we succeeded in the crystallization for a short time. We found that the TFTs characteristics were improved with decrease metal impieties in poly-Si thin films by this method.

  • PDF

Tailoring Porosity of Colloidal Boehmite Sol by Controlling Crystallite Size

  • Park, Myung-Chul;Lee, Sung-Reol;Kim, Hark;Park, In;Choy, Jin-Ho
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.6
    • /
    • pp.1962-1966
    • /
    • 2012
  • Boehmite sols have been prepared by crystallization of amorphous aluminum hydroxide gel obtained by hydrolysis and peptization of aluminum using acetic acid. The size of the boehmite crystallites could be controlled by Al molar concentration in amorphous gel by means of controlling grain growth at nucleation stage. The size of boehmite increases as a function of Al molar concentration. With increasing boehmite crystallite size, the $d_{(020)}$ spacing and the specific surface area decreases, whereas the pore volume increases along with pore size. Especially, the pore size of the boehmite sol particles is comparable to the crystallite size along the b axis, suggesting that the fibril thickness along the b axis among the crystallite dimensions of the boehmite contributes to the pore size. Therefore, the physical properties of boehmite sols can be determined by the crystallite size controlled as a function of initial Al concentration.

Effect of Adding Isopropylphenyl Diphenyl Phosphate on Isothermal Crystallization Behavior and Flame Retardancy of PLA Film (Isopropylphenyl Diphenyl Phosphate 첨가가 PLA필름의 등온결정화 거동과 방염특성에 미치는 영향)

  • Kim, Moon-Sun;Kim, Gyusun;Kim, Byung-Woo
    • Applied Chemistry for Engineering
    • /
    • v.23 no.2
    • /
    • pp.169-175
    • /
    • 2012
  • In the study, the effects of $130{\sim}150^{\circ}C$ annealing condition and 1~10 wt% isopropylphenyl diphenyl phosphate (IPPP) on crystallization behavior and flame retardancy of a full name (PLA) film were determined. The crystallization kinetics of PLA films with adding 1, 5, and 10 wt% IPPP at $140^{\circ}C$ were higher than those at 130 and $150^{\circ}C$. The average crystallinity and crystallite size of PLA film with 1 wt% IPPP were 21.3% and 24.8 nm, respectively. With an increasing IPPP content, the crystallinity of PLA film increased and the crystallite size decreased. The burning rate lowered with an increasing IPPP content as well.

Study on Isothermal Crystallization Behavior and Surface Properties of Non-Oriented PLA Film with Annealing Temperature (어닐링 온도에 따른 무배향 PLA 필름의 등온결정화 거동과 표면물성에 관한 연구)

  • Kim, Jihye;Kim, Moon-Sun;Kim, Byung-Woo
    • Korean Chemical Engineering Research
    • /
    • v.49 no.5
    • /
    • pp.611-616
    • /
    • 2011
  • In the study, annealing temperature was optimized by comparing with avrami crystallization rate and constant (k) using non-oriented PLA film as a base film. Crystallization rate constant of PLA film was 1.64, 1.68, and 1.26 at $120^{\circ}C$, $130^{\circ}C$, and $140^{\circ}C$, respectively. Annealing temperature was mainly affected on the surface properties such as rougnness (Ra) and kinetic friction coefficient (${\mu}_k$). Roughness of PLA film was 0.006 ${\mu}m$ at $80^{\circ}C$ and increased to 0.009 ${\mu}m$ 0.015 ${\mu}m$, 0.027 ${\mu}m$, and 0.029 ${\mu}m$ at $110^{\circ}C$, $120^{\circ}C$, $130^{\circ}C$ and $140^{\circ}C$, respectively. Kinetic friction coefficient decreased 0.45 to 0.43, 0.33, 0.31, 0.27 as annealing temperature was at $80^{\circ}C$, $110^{\circ}C$, $120^{\circ}C$, $130^{\circ}C$, and $140^{\circ}C$, respectivly. In addition, rate constant (k) was 0.58, 0.46, and 0.39 with adding 1 wt%, 3 wt%, and 5 wt% talc, respectively.

Study on Isothermal Crystallization Characteristics of PLA Film by Adding APP as a Nucleation Agent (APP 핵제를 첨가한 PLA 필름의 등온결정화 특성에 관한 연구)

  • Kim, Gyu-Sun;Kim, Moon-Sun;Kim, Byung-Woo
    • Korean Chemical Engineering Research
    • /
    • v.50 no.3
    • /
    • pp.582-587
    • /
    • 2012
  • In this paper, it was studied on the crystallization characteristics of PLA film by adding ammonium phosphate (APP) as a nucleation agent. Crystallinity and crystallite size of PLA film were determined by Scherrer equation. Crystallization rate constant of PLA film was calculated through Avrami equation. Film samples in the study were prepared by two steps. PLA films were prepared by adding 1, 5, and 10 wt%, respectively, at first and was secondly annealed at 130, 140, and $150^{\circ}C$. Crystallinity of pure PLA film was average 4.6% and those of PLA film with adding 1, 5, and 10 wt% APP were 12.2, 47.7, and 50.0%, respectively. Crystallite size of PLA film was average 28.0 nm and those of PLA film with adding 1, 5, and 10 wt% APP were 26.8, 24.0, and 19.0 nm, respectively. Crystallization rate constants of PLA film with 1 wt% APP were 2.12, 3.86, and 0.27 by annealing at 130, 140, and $150^{\circ}C$, respectively, where was higher than pure PLA film and those with adding 5 and 10 wt% APP, respectively.