• Title/Summary/Keyword: bioartificial liver

Search Result 17, Processing Time 0.022 seconds

Optimization of Chitosan-Alginate Encapsulation Process Using Pig Hepatocytes or Development of Bioartificial Liver

  • LEE , JI-HYUN;LEE, DOO-HOON;SON, JEONG-HWA;PARK, JUNG-KEUG;KIM, SUNG-KOO
    • Journal of Microbiology and Biotechnology
    • /
    • v.15 no.1
    • /
    • pp.7-13
    • /
    • 2005
  • Chitosan-alginate capsules were formed by electrostatic interactions and exhibited an appropriate mechanical strength, permeability, and stability for the culture of hepatocytes. Pig hepatocytes were isolated and hepatocyte spheroids formed and immobilized in chitosan-alginate capsules. An encapsulation procedure of 3 min and spheroid formation period of 24 h were the optimum conditions for the best liver functions. Pig hepatocytes with a cell density of $6.0{\tomes}10^6$ cells/ml in the capsules were found to be most suitable for application in a bioartificial liver support system. The encapsulated pig hepatocyte spheroids exhibited stable ammonia removal and urea secretion rates in a bioreactor for 2 weeks. Accordingly, chitosan-alginate encapsulated hepatocyte spheroids in a packed-bed bioreactor would appear to have potential as a bioartificial liver.

Method for Evaluating Metabolic Functions of Drugs in Bioartificial Liver

  • Park, Yueng-Guen;Hiroo Iwata;Seiji Satoh;Takehiko Uesugi;Ryu, Hwa-Won
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.8 no.5
    • /
    • pp.279-285
    • /
    • 2003
  • Lidocaine and galactose loading tests were performed on a bioartificial liver (BAL), an extracorporeal medical device incorporating living hepatocytes in a cartridge without a transport barrier across the membranes. The concentration changes were analyzed using pharmacokinetic equations to evaluate the efficacy and limitation of the proposed method. Lidocaine and galactose were found to be suitable drugs for a quantitative evaluation of the BAL functions, as they did not interact with the plasma proteins or blood vessels, making their concentrations easy to determine. The drug concentration changes after drug loading were easily analyzed using pharmacokinetic equations, and the BAL functions quantitatively expressed by pharmacokinetic parameters, such as the clearance (CL) and galactose elimination capacity (GEC). In addition, these two drugs have already been used in clinical tests to evaluate human liver functions over long periods, and lidocaine CL values and GEC values reported for a normal human liver. Thus, a comparison of the CL and GEC values for the BAL and a natural liver revealed what proportion of normal liver functions could be replaced by the BAL.

Determination of Optimum Aggregates of Porcine Hepatocytes As a Cell Source of a Bioartificial Liver

  • Lee, Doo-Hoon;Lee, Ji-Hyun;Choi, Jeong-Eun;Kim, Young-Jin;Kim, Sung-Koo;Park, Jung-Keug
    • Journal of Microbiology and Biotechnology
    • /
    • v.12 no.5
    • /
    • pp.735-739
    • /
    • 2002
  • Large quantities of porcine hepatocyte aggregates with various degrees of aggregation (DA) could be obtained by controlling the suspension periods (0,9,24, and 48 h), and by entrapping the hepatocyte aggregates in model materials of encapsulation such as Ca-alginate and type-I collagen gels. The effects of DA on liver-specific functions of hepatocytes were evaluated in order to obtain optimum DA for the cell source of bioartificial liver (BAL) systems. Irregular rugged aggregates (size $75 \pm 28$ $\mu\textrm{m}$) farmed by 24 h of suspension culturing showed peak viability and hepatic functions such as ammonia removal and albumin secretion in the two types of entrapment systems, thus offering themselves as a stable cell source of a BAL system for hepatic functions and scale-up.

Development of Hepatocyte Spheroids Immobilization Technique Using Alternative Encapsulation Method

  • Kim, Sungd-Po;Lee, Doo-Hoon;Park, Jung-Keug
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.3 no.2
    • /
    • pp.96-102
    • /
    • 1998
  • Primary hepatocytes of small animals such as rat and rabbit were often used for the study of extracorporeal liver support systems. Freshly isolated rat hepatocytes form spheroids within tow days when cultivated as suspension in spinner vessels. These spheroids showed enhanced liver specific functions and more differentiated morphology compared to hepatocytes cultured as monolayers However, shear stress caused by continuous agitation deteriorated spheroids gradually. In this work we immobilized spheroids to prolong liver specific activities. First, hepatocyte spheroids were suspended in collagen solution containing calcium chloride and then dropped into alginate solution. A thin layer of calcium alginate was formed around the droplet and then was removed after the inner collagen was gelled by treatment of sodium citrate buffer. Spheroids embedded in collagen-gel bead maintained liver specific functions such as albumin secretion rate longer than hepatocyte spheroids exposed to shear stress. Therefore, we suggest that this immobilization technique may offer an effective long-term hepatocyte cultivation and facilitase the development of a bioartificial liver support device.

  • PDF

Evaluation Methods and Design for Bioartificial Liver Based on Perfusion Model

  • Park Yueng Guen;Ryu Hwa-Won
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.10 no.1
    • /
    • pp.9-15
    • /
    • 2005
  • A bioartificial liver (BAL) is a medical device entrapping living hepatocytes or immortalized cells derived from hepatocytes. Many efforts have already been made to maintain the functions of the hepatocytes in a BAL device over a long term. However, there is still some uncertainty as to their efficacy. and their limitations are unclear. Therefore, it is important to quantitatively evaluate the metabolic functions of a BAL. In previous studies on in vitro BAL devices, two test methods, an initial bolus loading and constant-rate infusion plus initial bolus loading, were theoretically carried out to obtain physiologic data on drugs. However, in the current study, the same two methods were used as a perfusion model and derived the same clearance characterized by an interrelationship between the perfusate flow rate and intrinsic clearance. The interrelationship indicated that the CL increased with an increasing perfusate flow rate and approached its maximum value, i.e. intrinsic clearance. In addition, to set up an in vivo BAL system, the toxic plateau levels in the BAL system were calculated for both series and parallel circuit models. The series model had a lower plateau level than the parellel model. The difference in the toxic plateau levels between the parallel and series models increased with an increasing number of BAL cartridges.

ENGINEERING A BIOARTIFICIAL LIVER DEVICE

  • Park, Jae-Sung;Yarmush, Martin L.;Tilles, Arno W.
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.1419-1426
    • /
    • 2008
  • Fulminant hepatic failure is a clinical syndrome associated with a high mortality rate. Orthotopic liver transplantation is the only clinically proven effective treatment for patients with end-stage liver disease who do not respond to medical management. A major limitation of this treatment modality is the scarcity of donor organs available, resulting in patients dying while waiting for a donor liver. An extracorporeal bioartificial liver (BAL) device containing viable hepatocytes has the potential to provide temporary hepatic support to liver failure patients, serving as a bridge to transplantation while awaiting a suitable donor. In some patients, providing temporary hepatic support may be sufficient to allow adequate regeneration of the host liver, thereby eliminating the need for a liver transplant. Although the BAL device is a promising technology for the treatment of liver failure, there are several technical challenges that must be overcome in order to develop systems with sufficient processing capacity and of manageable size. In this overview, the authors describe the critical issues involved in developing a BAL device. They also discuss their experiences in hepatocyte culture optimization within the context of a microchannel flat-plate BAL device.

  • PDF

In vitro functional assenssment of bioartificial liver system using immobilized porcine hepatocyte spheroids

  • Lee, Ji-Hyun;Lee, Doo-Hoon;Yoon, Hee-Hoon;Jung, Doo-Hee;Park, Jung-Keug;Kim, Sung-Koo;Lee, Kwang-Woong;Lee, Suk-Koo
    • 한국생물공학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.305-306
    • /
    • 2003
  • To treat fulminant hepatic failure (FHF) patients, various extracorporeal bioartificial liver (BAL) systems have been developed. Several requirements should be met for the development of BAL systems: hepatocytes should be cultured in a sufficiently high density; their metabolic functions should be of a sufficiently high level and duration; and the BAL systems module should permit scaling-up and aseptic handling. Several investigators have found that freshly isolated primary hepatocytes can be cultured into three dimensional, tightly packed, freely suspended, multicellular aggregates, or spheroids. These specialized cell structures exhibited enhanced liver specific functions and a prolonged differentiated state compared to cells maintained in a monolayer culture. Cells in spheroids appear to mimic the morphology and ultrastructure of the in vivo liver lobule. The ability of hepatocytes to organize into three-dimensional structures was hypothesized to contribute to their enhanced liver-specific activities. In this study, the ammonia removal rate and urea secretion rate of pig hepatocytes spheroids encapsulated in Ca-alginate bead were determined. A packed-bed bioreactor with encapsulated pig hepatocytes was devised as BAL support system. The efficacy of the system was evaluated in vitro.

  • PDF

In Vitro Performance Assessment of a Bioartificial Liver Packed with Polyurethane Foam (다공성 폴리우레탄 충진형 생인공간의 체외 성능 평가)

  • 이두훈;이지현;김성구;박정극
    • KSBB Journal
    • /
    • v.16 no.1
    • /
    • pp.24-29
    • /
    • 2001
  • Recently hepatocyte-based bioartificial liver (BAL) and hepatocyte transplantation have been actively investigated to treat acute hepatic failure. The BAL acts as a bridge to provide patients with more time until a donor organ becomes available for transplantation or until their own liver can be regenerated. In this study, we manufactured a polyurethane foam (PUF) using 15% NCO-prepolymer with a pore opening that allows it to be used as a hepatocyte immobilizing material. Cubes of PUF (3 mm dim.) were seeded with rat primary hepatocytes at a density of 5.5$\pm$1.1$\times$ $10^6$ cells/$cm^3$ PUF by centrifuging them together. The cell laden PUF cubes were packed into a prototype reactor and perfused with a hormonally defined medium for a week. Hepatocytes in the pores of the PUF formed spheroids that showed stable ammonia removal and urea synthesis activities. The albumin production level was comparable to other BAL systems. The PUF packed hepatocyte bioreactor has the potential to be used as a BAL.

  • PDF

Effect of Low Temperature Preservation and Cell Density on Metabolic Function in a Bioartificial Live

  • Park, Yueng-Guen;Takehiko Tosha;Satoshi Fujita;Boru Zhu;Hiroo Iwata;Ryu, Hwa-Won
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.8 no.1
    • /
    • pp.41-46
    • /
    • 2003
  • Difficulties associated with bioartificial liver (BAL) preservation limit not only the commercialization of BAL, but also its clinical trials. In this study, the possibility of cold preservation of BAL cartridges containing porcine hepatocytes was examined at 4$^{\circ}C$. In an in vitro perfusion culture System, BAL cartridges maintained cytochrome P450 metabolic function for at least 50 days. However, all BAL cartridges completely lost their ammonia eliminating ability when stored at 4$^{\circ}C$. We a1so studied the effect of cell density on the maintenance of BAL liver function In a highly differentiated and healthy state. As expected, BALs containing a larger number of hepatocytes demonstrated higher metabolic functions. When metabolic functions were compared per gram of hepatotytes, no large differences were observed between devices containing different densities of hepatocytes. Decreased cell density did not Successfully prolong BAL function. The viability and function of isolated hepatotytes highly depend on the culture conditions, such as cell density, substrata, culture media, and additives to the culture media. Perfusion culture of BAL cartridges at 4$^{\circ}C$ gave a promosing result with respect to the maintenance of P450 activity. However, as indicated by the rapid loss of ammonia metabolic activity, many factors still remain to be optimized for preservation of BAL keeping high metabolic functions for a longer time.