• Title/Summary/Keyword: biocontrol

Search Result 589, Processing Time 0.037 seconds

Assessment of the Contribution of Antagonistic Secondary Metabolites to the Antifungal and Biocontrol Activities of Pseudomonas fluorescens NBC275

  • Dutta, Swarnalee;Yu, Sang-Mi;Lee, Yong Hoon
    • The Plant Pathology Journal
    • /
    • v.36 no.5
    • /
    • pp.491-496
    • /
    • 2020
  • An understanding of the contribution of secondary metabolites (SMs) to the antagonistic and biocontrol activities of bacterial biocontrol agents serves to improve biocontrol potential of the strain. In this study, to evaluate the contribution of each SM produced by Pseudomonas fluorescens NBC275 (Pf275) to its antifungal and biocontrol activity, we combined in silico analysis of the genome with our previous study of transposon (Tn) mutants. Thirteen Tn mutants, which belonged to 6 biosynthetic gene clusters (BGCs) of a total 14 BGCs predicted by the antiSMASH tool were identified by the reduction of antifungal activity. The biocontrol performance of Pf275 was significantly dependent on 2,4-diacetylphloroglucinol and pyoverdine. The clusters that encode for arylpolyene and an unidentified small linear lipopeptide influenced antifungal and biocontrol activities. To our knowledge, our study identified the contribution of SMs, such as a small linear lipopeptide and arylpolyene, to biocontrol efficacy for the first time.

Draft Genome Sequence of a Chitinase-producing Biocontrol Bacterium Serratia sp. C-1

  • Park, Seur Kee;Kim, Young Cheol
    • Research in Plant Disease
    • /
    • v.21 no.3
    • /
    • pp.222-226
    • /
    • 2015
  • The chitinase-producing bacterial strain C-1 is one of the key chitinase-producing biocontrol agents used for effective bioformulations for biological control. These bioformulations are mixed cultures of various chitinolytic bacteria. However, the precise identification, biocontrol activity, and the underlying mechanisms of the strain C-1 have not been investigated so far. Therefore, we evaluated in planta biocontrol efficacies of C-1 and determined the draft genome sequence of the strain in this study. The bacterial C-1 strain was identified as a novel Serratia sp. by a phylogenic analysis of its 16S rRNA sequence. The Serratia sp. C-1 bacterial cultures showed strong in planta biocontrol efficacies against some major phytopathogenic fungal diseases. The draft genome sequence of Serratia sp. C-1 indicated that the C-1 strain is a novel strain harboring a subset of genes that may be involved in its biocontrol activities.

Laboratory Culture Media-Dependent Biocontrol Ability of Burkholderia gladioli strain B543

  • Bae, Yeoung-Seuk;Park, Kyung-Seok;Choi, Ok-Hee
    • The Plant Pathology Journal
    • /
    • v.23 no.3
    • /
    • pp.161-165
    • /
    • 2007
  • Cultivation of a biocontrol agent on a certain medium often results in reduced biocontrol efficacy and alters physiological state. In our previous study, Burkholderia gladioli strain B543 with long-term subculture on tryptic soy agar resulted in significantly reduced biocontrol ability against cucumber damping-off caused by P. ultimum. Therefore, we investigated the influence of laboratory culturing media on biocontrol activity and physiological state of Burkholderia gladioli strain B543 by using long-term repeated culture on a certain medium. When isolate B543 were successionally cultured on King's B agar (KBA), tryptic soy agar, nutrient agar (NA), or soil extract agar more than 20 times, the isolate cultured on KBA or NA showed a significantly enhanced biocontrol efficacy and higher population density in the rhizosphere of cucumber compared to that of the others. However, the isolates cultured on KBA more than 20 times showed the lowest production of protease, siderophore, or antifungal substance(s), measured by skim milk agar, Chrome-Azurol-S agar, and potato dextrose agar amended with 10% of the culture filtrate, respectively. Our results suggest that adaptation to proper culturing medium can alter biocontrol ability and physiological state, and we must consider laboratory media in optimizing the use of biocontrol agents.

Effect of culturing media on biocontrol ability and physiological state of Burkholderia gladioli strain B543.

  • Bae, Yeoung-Seuk;Park, Kyungseok;Kim, Choong-Hoe
    • Proceedings of the Korean Society of Plant Pathology Conference
    • /
    • 2003.10a
    • /
    • pp.87.2-87
    • /
    • 2003
  • Long-term repeated culturing of biocontrol agents on a certain medium often results in reduced biocontrol efficacy and altered physiology. Effect of culturing media on biocontrol ability and physiological state of Burkholderia gladioli strain B543 was investigated. Over 20 times repeated cultivation of B. giadioli strain B543 on Kings B medium or nutrient agar medium showed improved biological control of cucumber damping-off caused by Pythium ultimum, while one time cultivation on KB or NA did not. The repeated cultivation also induced the physiological changes of the biocontrol agent such as antifungal activity and the production of protease and siderophore. Our result indicates that adaptation to proper culturing medium can alter biocontrol ability and must consider in optimizing the use of biocontrol agents.

  • PDF

Climate change and resilience of biocontrol agents for mycotoxin control

  • Magan, Naresh;Medina, Angel
    • 한국균학회소식:학술대회논문집
    • /
    • 2018.05a
    • /
    • pp.41-41
    • /
    • 2018
  • There has been an impetus in the development of biocontrol agents (BCAs) with the removal of a number of chemical compounds in the market, especially in the European Union. This has been a major driver in the development of Integrated Pest Management systems (IPM) for both pest and disease control. For control of mycotoxigenic fungi, there is interest in both control of colonization and more importantly toxin contamination of staple food commodities. Thus the relative inoculum potential of biocontrol agent vs the toxigenic specie sis important. The major bottlenecks in the production and development of formulations of biocontrol agents are the resilience of the strains, inoculum quality and formulation with effective field efficacy. It was recently been shown for mycotoxigenic fungi such as Aspergillus flavus, under extreme climate change conditions, growth is not affected although there may be a stimulation of aflatoxin production. Thus, the development of resilient biocontrol strains which can may have conserved control efficacy but have the necessary resilience becomes critical form a food security point of view. Indeed, under predicted climate change scenarios the diversity of pests and fungal diseases are expected to have profound impacts on food security. Thus, when examining the identification of potential biocontrol strains, production and formulation it is critical that the resilience to CC environmental factors are included and quantified. The problems in relation to the physiological competence and the relative humidity range over which efficacy can occur, especially pre-harvest may be increase under climate change conditions. We have examined the efficacy of atoxigenic strains of A. flavus and Clanostachys rosea and other candidates for control of A. flavus and aflatoxin contamination of maize, and for Fusarium verticillioides and fumonisin toxin control. We have also examined the potential use of fluidized-bed drying, nanoparticles/nanospheres and encapsulation approaches to enhance the potential for the production of resilient biocontrol formulations. The objective being the delivery of biocontrol efficacy under extreme interacting climatic conditions. The potential impact of climate change factors on the efficacy of biocontrol of fungal diseases and mycotoxins are discussed.

  • PDF

Comparison of Alpha-Factor Preprosequence and a Classical Mammalian Signal Peptide for Secretion of Recombinant Xylanase xynB from Yeast Pichia pastoris

  • He, Zuyong;Huang, Yuankai;Qin, Yufeng;Liu, Zhiguo;Mo, Delin;Cong, Peiqing;Chen, Yaosheng
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.4
    • /
    • pp.479-483
    • /
    • 2012
  • The secretory efficiency of recombinant xylanase xynB from yeast Pichia pastoris between the ${\alpha}$-factor preprosequence and a classical mammalian signal peptide derived from bovine ${\beta}$-casein was compared. The results showed that although the bovine ${\beta}$-casein signal peptide could direct high-level secretion of recombinant xylanase, it was relatively less efficient than the ${\alpha}$-factor preprosequence. In contrast, the bovine ${\beta}$-casein signal peptide caused remarkably more recombinant xylanase trapped intracellularly. Real-time RT-PCR analysis indicated that the difference in the secretory level between the two signal sequences was not due to the difference in the transcriptional efficiency.

Effect of Temperature and Relative Humidity on Growth of Aspergillus and Penicillium spp. and Biocontrol Activity of Pseudomonas protegens AS15 against Aflatoxigenic Aspergillus flavus in Stored Rice Grains

  • Mannaa, Mohamed;Kim, Ki Deok
    • Mycobiology
    • /
    • v.46 no.3
    • /
    • pp.287-295
    • /
    • 2018
  • In this study, we evaluated the effect of different temperatures (10, 20, 30, and $40^{\circ}C$) and relative humidities (RHs; 12, 44, 76, and 98%) on populations of predominant grain fungi (Aspergillus candidus, Aspergillus flavus, Aspergillus fumigatus, Penicillium fellutanum, and Penicillium islandicum) and the biocontrol activity of Pseudomonas protegens AS15 against aflatoxigenic A. flavus KCCM 60330 in stored rice. Populations of all the tested fungi in inoculated rice grains were significantly enhanced by both increased temperature and RH. Multiple linear regression analysis revealed that one unit increase of temperature resulted in greater effects than that of RH on fungal populations. When rice grains were treated with P. protegens AS15 prior to inoculation with A. flavus KCCM 60330, fungal populations and aflatoxin production in the inoculated grains were significantly reduced compared with the grains untreated with strain AS15 regardless of temperature and RH (except 12% RH for fungal population). In addition, bacterial populations in grains were significantly enhanced with increasing temperature and RH, regardless of bacterial treatment. Higher bacterial populations were detected in biocontrol strain-treated grains than in untreated control grains. To our knowledge, this is the first report showing consistent biocontrol activity of P. protegens against A. flavus population and aflatoxin production in stored rice grains under various environmental conditions of temperature and RH.

Biological Control of Oomycete Soilborne Diseases Caused by Phytophthora capsici, Phytophthora infestans, and Phytophthora nicotianae in Solanaceous Crops

  • Elena Volynchikova;Ki Deok Kim
    • Mycobiology
    • /
    • v.50 no.5
    • /
    • pp.269-293
    • /
    • 2022
  • Oomycete pathogens that belong to the genus Phytophthora cause devastating diseases in solanaceous crops such as pepper, potato, and tobacco, resulting in crop production losses worldwide. Although the application of fungicides efficiently controls these diseases, it has been shown to trigger negative side effects such as environmental pollution, phytotoxicity, and fungicide resistance in plant pathogens. Therefore, biological control of Phytophthora-induced diseases was proposed as an environmentally sound alternative to conventional chemical control. In this review, progress on biological control of the soilborne oomycete plant pathogens, Phytophthora capsici, Phytophthora infestans, and Phytophthora nicotianae, infecting pepper, potato, and tobacco is described. Bacterial (e.g., Acinetobacter, Bacillus, Chryseobacterium, Paenibacillus, Pseudomonas, and Streptomyces) and fungal (e.g., Trichoderma and arbuscular mycorrhizal fungi) agents, and yeasts (e.g., Aureobasidium, Curvibasidium, and Metschnikowia) have been reported as successful biocontrol agents of Phytophthora pathogens. These microorganisms antagonize Phytophthora spp. via antimicrobial compounds with inhibitory activities against mycelial growth, sporulation, and zoospore germination. They also trigger plant immunity-inducing systemic resistance via several pathways, resulting in enhanced defense responses in their hosts. Along with plant protection, some of the microorganisms promote plant growth, thereby enhancing their beneficial relations with host plants. Although the beneficial effects of the biocontrol microorganisms are acceptable, single applications of antagonistic microorganisms tend to lack consistent efficacy compared with chemical analogues. Therefore, strategies to improve the biocontrol performance of these prominent antagonists are also discussed in this review.

Influence of Commercial Antibiotics on Biocontrol of Soft Rot and Plant Growth Promotion in Chinese Cabbages by Bacillus vallismortis EXTN-1 and BS07M

  • Sang, Mee Kyung;Dutta, Swarnalee;Park, Kyungseok
    • Research in Plant Disease
    • /
    • v.21 no.4
    • /
    • pp.255-260
    • /
    • 2015
  • We investigated influence of three commercial antibiotics viz., oxolinic acid, streptomycin, and validamycin A, on biocontrol and plant growth promoting activities of Bacillus vallismortis EXTN-1 and BS07M in Chinese cabbage. Plants were pre-drenched with these strains followed by antibiotics application at recommended and ten-fold diluted concentration to test the effect on biocontrol ability against soft rot caused by Pectobacterium carotovorum SCC1. The viability of the two biocontrol strains and bacterial pathogen SCC1 was significantly reduced by oxolinic acid and streptomycin in vitro assay, but not by validamycin A. In plant trials, strains EXTN-1 and BS07M controlled soft rot in Chinese cabbage, and there was a significant difference in disease severity when the antibiotics were applied to the plants drenched with the two biocontrol agents. Additional foliar applications of oxolinic acid and streptomycin reduced the disease irrespective of pre-drench treatment of the PGPRs. However, when the plants were pre-drenched with EXTN-1 followed by spray of validamycin A at recommended concentration, soft rot significantly reduced compared to untreated control. Similarly, strains EXTN-1 and BS07M significantly enhanced plant growth, but it did not show synergistic effect with additional spray of antibiotics. Populations of the EXTN-1 or BS07M in the rhizosphere of plants sprayed with antibiotics were significantly affected as compared to control. Taken together, our results suggest that the three antibiotics used for soft rot control in Chinese cabbage could affect bacterial mediated biocontrol and plant growth promoting activities. Therefore, combined treatment of the PGPRs and the commercial antibiotics should be carefully applied to sustain environmental friendly disease management.

Biocontrol of Phytophthora Blight and Anthracnose in Pepper by Sequentially Selected Antagonistic Rhizobacteria against Phytophthora capsici

  • Sang, Mee Kyung;Shrestha, Anupama;Kim, Du-Yeon;Park, Kyungseok;Pak, Chun Ho;Kim, Ki Deok
    • The Plant Pathology Journal
    • /
    • v.29 no.2
    • /
    • pp.154-167
    • /
    • 2013
  • We previously developed a sequential screening procedure to select antagonistic bacterial strains against Phytophthora capsici in pepper plants. In this study, we used a modified screening procedure to select effective biocontrol strains against P. capsici; we evaluated the effect of selected strains on Phytophthora blight and anthracnose occurrence and fruit yield in pepper plants under field and plastic house conditions from 2007 to 2009. We selected four potential biocontrol strains (Pseudomonas otitidis YJR27, P. putida YJR92, Tsukamurella tyrosinosolvens YJR102, and Novosphingobium capsulatum YJR107) among 239 bacterial strains. In the 3-year field tests, all the selected strains significantly (P < 0.05) reduced Phytophthora blight without influencing rhizosphere microbial populations; they showed similar or better levels of disease suppressions than in metalaxyl treatment in the 2007 and 2009 tests, but not in the 2008 test. In the 2-year plastic house tests, all the selected strains significantly (P < 0.05) reduced anthracnose incidence in at least one of the test years, but their biocontrol activities were variable. In addition, strains YJR27, YJR92, and YJR102, in certain harvests, increased pepper fruit numbers in field tests and red fruit weights in plastic house tests. Taken together, these results indicate that the screening procedure is rapid and reliable for the selection of potential biocontrol strains against P. capsici in pepper plants. In addition, these selected strains exhibited biocontrol activities against anthracnose, and some of the strains showed plant growth-promotion activities on pepper fruit.