• Title/Summary/Keyword: biodiesel

Search Result 566, Processing Time 0.03 seconds

Risk Evaluation of Biodiesel (바이오디젤연료 위험성평가)

  • Kwon, Kyung-Ok
    • Fire Science and Engineering
    • /
    • v.22 no.5
    • /
    • pp.79-82
    • /
    • 2008
  • Biodiesel is manufactured from vegetable oils, etc. in reaction with methanol so that the product of biodiesel may be dangerous due to the methanol remained of it. The risks of methanol remained in biodiesel were studied by measuring flash points and dynamic viscosity to some samples of biodiesel by adding methanol to a certain percentage of. The results of flash points of biodiesel are decreased in accordance with increasing of methanol in biodiesel and also decreasing the dynamic viscosity. It was shown that the risks of explosion of biodiesel are significantly high due to lower flash points resulted from methanol remained in biodiesel fuel as a reactant or adding to biodiesel for reduction of viscosity.

Economic Analysis of a Rape Production for Biodiesel (바이오디젤 원료용 유채재배의 경제성 분석)

  • Kim, Chung-Sil;Lee, Sang-Ho
    • Korean Journal of Organic Agriculture
    • /
    • v.14 no.3
    • /
    • pp.237-249
    • /
    • 2006
  • The objective of this paper was to evaluate economic feasibility of biodiesel production. Biodiesel is a diesel-fuel replacement produced from domestic renewable resources such as vegetable oils. This paper deals mainly with the income and cost data to analyze economic feasibility of biodiesel. The income of a rape farmer for biodiesel was 206,894won/10a, and it's similar to barley income. In addition a rape production for biodiesel have ancillary effect. Therefore we have to use direct payment for encouraging the production and use of biodiesel.

  • PDF

The Effects of Canola or Mustard Biodiesel Press Cake on Nutrient Digestibility and Performance of Broiler Chickens

  • Thacker, P.A.;Petri, D.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.22 no.11
    • /
    • pp.1531-1539
    • /
    • 2009
  • This study compared the nutritional value of canola (B. napa) and mustard (B. hirta) press cakes obtained from the biodiesel industry as ingredients for use in diets fed to broiler chickens. A total of 210, one-day old, male broiler chicks were randomly assigned to one of seven dietary treatments. The control diet was based on wheat and soybean meal and contained 15% canola meal. For the experimental diets, 5, 10 or 15% of the canola meal was replaced with an equal amount of either canola or mustard biodiesel press cake. Dry matter and neutral detergent fiber digestibility were significantly higher for birds fed diets containing either canola or mustard biodiesel press cake compared with canola meal. Dry matter and neutral detergent fiber digestibility of the canola biodiesel press cakes was higher than the mustard biodiesel press cakes. Ether extract digestibility and nitrogen retention were significantly higher for birds fed canola biodiesel press cake compared with canola meal and mustard biodiesel press cake. Body weight gain and feed intake did not differ between birds fed canola or mustard biodiesel press cake and canola meal. In addition, there was no significant difference in body weight gain or feed intake between birds fed diets containing canola or mustard biodiesel press cake. Feed conversion was significantly improved for birds fed either canola or mustard biodiesel press cake compared with canola meal. Mortality was unaffected by treatment. Since the performance of broilers fed canola biodiesel press cakes was essentially the same as that of broilers fed canola meal, it is difficult to justify a premium to be paid for canola biodiesel press cake over that paid for canola meal. In addition, there was no difference in the performance of broilers fed biodiesel press cake obtained from canola or mustard seed. As mustard seeds are generally available at a lower price than canola seed, there may be some incentive to use mustard rather than canola seed for producing biodiesel press cake for use in poultry production.

Prospects of Insect Biodiesel Production in Korea: A review (곤충 유래 바이오디젤의 국내 생산 가능성에 관한 고찰)

  • Park, Jo Yong
    • Journal of the Korean Applied Science and Technology
    • /
    • v.36 no.4
    • /
    • pp.1399-1409
    • /
    • 2019
  • Biodiesel is a renewable and environmentally friendly liquid biofuel for transportation. Insect is considered as a new valuable biomass to convert into biodiesel. In particular, BSF(Black Soldier Fly) containing high fat is a renewable source of biodiesel. Biodiesel drived BSF has high concentration of saturated fatty acid methyl ester and low concentration of polyunsaturted fatty acid methyl ester which makes it potentially an ideal substrate for producing excellent quality biodiesel. Most of the fuel properties of BSF biodiesel were met the requirements of standard EN 14214. BSF have a higher lipid yield and biodiesel productivity as compared to microalgae and vegetable oils. This review paper includes the overall summary and compilation of the insect research conducted on biodiesel production and includes the BSF biodiesel properties.

The Lubricity of Biodiesel as Alternative Fuel (대체연료로서 바이오디젤의 윤활성)

  • Lim, Young-Kwan;Lee, Cheon-Ho
    • Tribology and Lubricants
    • /
    • v.26 no.1
    • /
    • pp.78-87
    • /
    • 2010
  • Biodiesel have been studied as alternative fuel due to solution of air pollution and fossil fuel exhaustion. Biodiesel from animal fat and vegetable oil was known as eco-friendly fuel like low toxicity, biodegradable compare to petrodiesel. In particular, biodiesel have excellent lubricity due to involved ester functional group. This paper shows the biodiesel's lubricity based on worldwide biodiesel research.

Study on Hazard of Biodiesel

  • Koseki, Hiroshi;Lim, Woo-Sub;Iwata, Yusaku
    • International Journal of Safety
    • /
    • v.11 no.1
    • /
    • pp.11-14
    • /
    • 2012
  • Hazard of Biodiesel (BDF) was studied. Biodiesel is a name for a variety of ester-based fuel made from vegetable oils. Recently importance of biodiesel is increasing, and its fires were sometimes reported. Therefore we studied on hazard of biodiesel comparing (petroleum) diesel oil and vegetable oil, raw materials of biodiesel. We found that biodiesel is auto-oxidized easily and ignites, and its flash point decreases when even small amount of methanol exists. And there are various raw materials to manufacture biodiesel, so we studied the difference of these materials, and their aging on safety.

The Effect of Biodiesel Oxidation Deterioration on Emission (바이오디젤의 산화가 배출가스에 미치는 영향)

  • Song, Hoyoung;Lee, Minho;Kim, Kiho;Jung, Choongsub
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.220.2-220.2
    • /
    • 2011
  • Biodiesel and biodiesel blend fuel are receiving increasing attention as alternative fuels for diesel engines without substantial modifications. Biodiesel fuels and blending have been widely studied and applied in diesel engine because of biodiesel's lower sulfur, lower aromatic hydrocarbon and higher oxygen content. Biodiesels have the potential to be oxidized in different condition. It has reported that oxidation deterioration of biodiesel is different in the condition of storage and oxidation causes chemical property change of methyl esters. Sunlight intensity, temperature, material of container and contact surface with oxygen are key dominant factors accelerating oxidation deterioration. In this study, we chose temperature among key oxidation conditions and metal container filled with biodiesel was heated at about $110^{\circ}C$ for 10 days in order to accelerate oxidation deterioration. To better understand the effect of biodiesel blends on emission, steady state tests were conducted on a heavy duty diesel engine. The engine was fueled with Ultra Low Sulphur Diesel(ULSD), a blend of 10% and 20%(BD10, BD20) on volumetric basis, equipped with a common rail direct injection system and turbocharger, lives up to the requirements of EURO 3. The experimental results show that the blend fuel of normal biodiesel with BD10 and BD20 increased NOx. The result of PM was similar to diesel fuel on BD10, but the result of PM on BD20 was increased about 63% more than its of diesel. The blend fuel of Oxidation biodiesel with BD10 and BD20 increased NOx as the results of normal biodiesel. But PM was all increased on BD10 and BD20. Especially THC was extremely increased when test fuel contains biodiesel about 140% more than its of diesel. Through this study, we knew that oxidation deterioration of biodiesel affects emission of diesel engine.

  • PDF

Comparative Analysis on Combustion Characteristics of Diesel Oil and Biodiesel Blends in Dl Diesel Engine (Using Soybean Oil) (직접분사식 디젤기관에서 디젤유와 바이오디젤 혼합유의 연소특성에 대한 비교 연구 (대두유를 중심으로))

  • Lim, J.K.;Choi, S.Y.;Cho, S.G.
    • Journal of Power System Engineering
    • /
    • v.13 no.6
    • /
    • pp.29-34
    • /
    • 2009
  • Recently, we have a lot interest in a sudden rise of oil prices and a change weather for the earth warmming, so, development of new alternative fuels need in order to spare fossil fuel and reduce exhaust emissions for air pollution prevention. Biodiesel, which can be generated from natural renewable sources such as new or used vegetable oils or animal fats, may be used as fuel in diesel engine of compression ignition engine. In this paper, the combustion characteristics between neat diesel oil and biodiesel blends(10 vol.% biodiesel and 20 vol.% biodiesel) were tested using four stroke, direct injection diesel engine, especially this biodiesel was produced from soybean oil at our laboratory. This analysis showed that cylinder pressures, the rate of pressure rises and the rate of heat releases were decreased as the blending ratios of biodiesel to diesel oil increased because of lower heating value of biodiesel in spite of increased oxygen content in biodiesel.

  • PDF

Effects of Biodiesel Fuel on Exhaust Emission Characteristics in Diesel Engine(Using Soybean Oil) (디젤기관에서 바이오디젤 연료가 배기배출물 특성에 미치는 영향(대두유를 중심으로))

  • Lim, Jae-Keun;Choi, Soon-Youl;Cho, Sang-Gon
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.32 no.1
    • /
    • pp.27-32
    • /
    • 2008
  • Recently, we have a lot of interest in alternative fuels to provide energy independence from oil producing country and to reduce exhaust emissions for air pollution prevention. Biodiesel, which can be generated from natural renewable sources such as new or used vegetable oils or animal fats, may be used as fuel in diesel engine of compression ignition engine. In this paper, the test results on specific fuel consumption and exhaust emissions of neat diesel oil and biodiesel blends(10 vol.% biodiesel and 20 vol.% biodiesel) were presented using four stroke, direct injection diesel engine, especially this biodisel was produced from soybean oil at our laboratory. This study showed that Soot and CO emission were decreased as the blending ratios of biodiesel to diesel oil increased, on the other hand NOx emission was slightly increased because of the oxygen content in biodiesel. Also, the biodiesel blends yielded slightly higher specific fuel consumption than that of diesel oil because of lower heating value of biodiesel.

Effect of Antioxidants on the Oxidative Stability of Biodiesel Fuels (항산화제가 바이오디젤유의 산화안정성에 미치는 영향)

  • Ryu, Kyung-Hyun
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.6
    • /
    • pp.81-86
    • /
    • 2007
  • Biodiesel fuel that consists of saturated and unsaturated long-chain fatty acid alkyl esters is an alternative diesel fuel produced from vegetable oils or animal fats. However, air causes autoxidation of biodiesel fuel during storage, which can reduce fuel quality by adversely affecting its properties, such as the kinematic viscosity and acid value. One approach for improving the resistance of fatty derivatives to autoxidation is to mix them with antioxidants. This study investigated the effectiveness of five such antioxidants in mixtures with biodiesel fuels produced by three biodiesel manufacturers : tert-butylhydroquinone (TBHQ), butylated hydroxyanisole (BHA), butylated hydroxytoluene (BHT), propyl gallate (PrG) and $\alpha$-tocopherol. Oxidation stability was determined using Rancimat equipment. The results show that TBHQ, BHA, and BHT were the most effective and $\alpha$-tocopherol was the least effective at increasing the oxidation stability of biodiesel. This study recommends that TBHQ and PrG be used for safeguarding biodiesel fuel from the effects of autoxidation during storage.