• Title/Summary/Keyword: biofilm

Search Result 865, Processing Time 0.028 seconds

Perturbation of host responses by Porphyromonas gingivalis biofilm (Porphyromonas gingivalis 바이오필름에 의한 숙주 면역반응의 교란)

  • Jeon, Woo-Seok;Kim, Sung-Jo;Choi, Jeom-Il
    • Journal of Periodontal and Implant Science
    • /
    • v.32 no.4
    • /
    • pp.827-836
    • /
    • 2002
  • The present study was performed to evaluate how cellular and humoral immune responses were perturbed by immunization of mixed periodontal bacterial biofilms. Each group of mice was immunizared with 1) Poqhyromonas gingivalis (P. gingivaliis) grown as a planktonic culture, 2) Fusobacterium nucleatum (F. nucleatum), 3) P. gingivalis grown as a biofilm, or 4) mixed P. gingivalis plus F. nucleatum grown as a biofilm culture, respectively. Immune mouse sera were collected from each mouse. Spleens were harvested to isolate T cells and consequently stimulated with antigen presenting cells and P. gingivalis whole cell antigen to establish P. gingivalis-specific T cell lines. There were no significant differences in the mean anti- gingivalis IgG antibody titers among mouse groups. Immunization of mice with pure P. gingivalis biofilm or mixed P gingivalis plus F. nucleatum biofilm resulted in significant reduction o f antibody avidity and opsonophagocytois function. INF-$\gamma$production by P. gingivalis-specific T cell lines was also substantially recluced in mouse groups immunized with the biofilm. It was concluded that P. gingivalis biofilm perturbs the cellular and humoral immune responses in periodontal disease.

Biofilm modeling systems (생물막 모델 시스템)

  • Kim, Soo-Kyoung;Lee, Joon-Hee
    • Korean Journal of Microbiology
    • /
    • v.52 no.2
    • /
    • pp.125-139
    • /
    • 2016
  • Biofilms are considered a complexly structured community of microorganisms derived from their attached growth to abiotic and biotic surfaces. In human life, they mediate serious infections and cause many problems in civil and industrial facilities. While it is of huge interest for scientists to understand biofilms, it has been very hard to directly analyze the various biofilms in nature. A variety of biofilm models have been suggested for laboratory-scale biofilm formation and many methods based on these models are widely used for the biofilm researches. These biofilm models mimic characteristics of environmental biofilms with different advantages and disadvantages. In this review, we will introduce these currently used biofilm model systems and explain their relative merits.

Inhibition of biofilm formation of periodontal pathogens by D-Arabinose

  • An, Sun-Jin;Namkung, Jong-Uk;Ha, Kyung-Won;Jun, Hye-Kyoung;Kim, Hyun Young;Choi, Bong-Kyu
    • International Journal of Oral Biology
    • /
    • v.46 no.3
    • /
    • pp.111-118
    • /
    • 2021
  • Periodontitis and periimplantitis are caused as a result of dental biofilm formation. This biofilm is composed of multiple species of pathogens. Therefore, controlling biofilm formation is critical for disease prevention. To inhibit biofilm formation, sugars can be used to interrupt lectin-involving interactions between bacteria or between bacteria and a host. In this study, we evaluated the effect of D-Arabinose on biofilm formation of putative periodontal pathogens as well as the quorum sensing activity and whole protein profiles of the pathogens. Crystal violet staining, confocal laser scanning microscopy, and scanning electron microscopy revealed that D-Arabinose inhibited biofilm formation of Porphyromonas gingivalis, Fusobacterium nucleatum, and Tannerella forsythia. D-Arabinose also significantly inhibited the activity of autoinducer 2 of F. nucleatum and the expression of representative bacterial virulence genes. Furthermore, D-Arabinose treatment altered the expression of some bacterial proteins. These results demonstrate that D-Arabinose can be used as an antibiofilm agent for the prevention of periodontal infections.

Mathematical Models for the Biofilm Formation of Geobacillus and Anoxybacillus on Stainless Steel Surface in Whole Milk

  • Karaca, Basar;Buzrul, Sencer;Cihan, Arzu Coleri
    • Food Science of Animal Resources
    • /
    • v.41 no.2
    • /
    • pp.288-299
    • /
    • 2021
  • Biofilm formation of Geobacillus thermodenitrificans, Geobacillus thermoglucosidans and Anoxybacillus flavithermus in milk on stainless steel were monitored at 55℃, 60℃, and 65℃ for various incubation times. Although species of Geobacillus showed a rapid response and produced biofilm within 4 h on stainless steel, a delay (lag time) was observed for Anoxybacillus. A hyperbolic equation and a hyperbolic equation with lag could be used to describe the biofilm formation of Geobacillus and Anoxybacillus, respectively. The highest biofilm formation amount was obtained at 60℃ for both Geobacillus and Anoxybacillus. However, the biofilm formation rates indicated that the lowest rates of formation were obtained at 60℃ for Geobacillus. Moreover, biofilm formation rates of G. thermodenitrificans (1.2-1.6 Log10CFU/mL∙h) were higher than G. thermoglucosidans (0.4-0.7 Log10CFU/mL∙h). Although A. flavithermus had the highest formation rate values (2.7-3.6 Log10CFU/mL∙h), this was attained after the lag period (4 or 5 h). This study revealed that modeling could be used to describe the biofilm formation of thermophilic bacilli in milk.

Biofilm Signaling, Composition and Regulation in Burkholderia pseudomallei

  • Pravin Kumran Nyanasegran;Sheila Nathan;Mohd Firdaus-Raih;Nor Azlan Nor Muhammad;Chyan Leong Ng
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.1
    • /
    • pp.15-27
    • /
    • 2023
  • The incidence of melioidosis cases caused by the gram-negative pathogen Burkholderia pseudomallei (BP) is seeing an increasing trend that has spread beyond its previously known endemic regions. Biofilms produced by BP have been associated with antimicrobial therapy limitation and relapse melioidosis, thus making it urgently necessary to understand the mechanisms of biofilm formation and their role in BP biology. Microbial cells aggregate and enclose within a self-produced matrix of extracellular polymeric substances (EPSs) to form biofilm. The transition mechanism of bacterial cells from planktonic state to initiate biofilm formation, which involves the formation of surface attachment microcolonies and the maturation of the biofilm matrix, is a dynamic and complex process. Despite the emerging findings on the biofilm formation process, systemic knowledge on the molecular mechanisms of biofilm formation in BP remains fractured. This review provides insights into the signaling systems, matrix composition, and the biosynthesis regulation of EPSs (exopolysaccharide, eDNA and proteins) that facilitate the formation of biofilms in order to present an overview of our current knowledge and the questions that remain regarding BP biofilms.

Comparison of microtensile bond strength on non-carious cervical lesions according to biofilm removal method (생체막 제거 방법에 따른 비우식성 치경부 병소의 미세인장강도 비교)

  • Sung, Kun-Hwa;Min, Jeong-Bum;Park, Tae-Young
    • The Journal of the Korean dental association
    • /
    • v.58 no.11
    • /
    • pp.683-689
    • /
    • 2020
  • Dentin surface of non-carious lesion is usually attached with oral biofilm. The biofilm should be removed before application of restorative material, because it may reduce the bond strength of adhesive system. The aim of this study was to evaluate the microtensile bond strength, when the biofilm was removed with brush or bur. Twenty extracted human third molars were sectioned horizontally to obtain dentin surface. Specimen were divided randomly into four group. Biofilm formation was performed in three group, except for Group 1 (negative control). Biofilm was removed as follows: Group 3, using ICB brush; Group 4, using lowspeed round bur #2. Group 2 (positive control) was not removed Biofilm. And in all four groups, the adhesive system (Optibond FL, Kerr) was applied to etched dentin surface, and resin composite was built up in three 1mm increments. After 24 hour storage in distilled water, the teeth were perpendicularly sectioned to obtain beams (1 × 1 mm2). Microtensile bond strength was measured and the data were statistically analyzed using one-way ANOVA and Tukey's post hoc test (p<0.05). Group 4 showed the highest microtensile bond strength (p<0.05), Group 3 showed no significant improvements when compared to Group 1. Group 2 showed lowest microtensile bond strength (p<0.05). When restoring a non-carious cervical lesion, it is essential to remove the biofilm present on the dentin surface. In addition, in the method of removing the biofilm, both the brush removal method and the bur removal method were effective.

  • PDF

Community characteristics of early biofilms formed on water distribution pipe materials (수도관 재질에 형성된 초기 생물막 형성 미생물의 군집 특성)

  • Kim, Yeong-Kwan;Park, Sung-Gu;Lee, Dong-Hun;Choi, Sung-Chan
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.26 no.6
    • /
    • pp.767-777
    • /
    • 2012
  • Annular Biofilm Reactor (ABR) equipped with coupons of three different pipe materials (STS 304, PVC, PE) was used to generate drinking water biofilm samples. The level of assimilable organic carbon (AOC) during the sample generation period was $37.3{\mu}g/L$, and this level did not seem to be low enough to limit the formation of biofilm in this study. Terminal-restriction fragment length polymorphism (T-RFLP) analyses determined T-RF profile as early as 3 h of exposure on PVC coupons. Average surface roughness ($R_a$) measured by atomic force microscopic analyses was 125.7 nm for PVC, and this value was higher than for STS (71.6 nm) and PE (74.0 nm). However, biofilm formation was faster on STS (6 h) than on PE (12 h), which indicated that surface roughness might not be the only factor that controlled the initiation of biofilm development. Upon detection of the T-RF peaks, richness (S) and diversity indices such as Shannon (H) and Simpson (1/D) demonstrated a rather slow increase until 48 h followed by rapid increase regardless of the pipe materials. Differences of microbial community structures among the biofilm samples were determined based on the cluster analysis using Jaccard coefficients (Sj). Biofilm communities could be divided into two distinct groups according to the exposure time regardless of the pipe materials. First group contained a young (< 48 h) biofilm samples (10 out of 11) but second group contained a mature (${\geq}$ 48 h) samples (11 out of 14). Results suggested that, due to the complexity of biofilm, the targeting of the first group of cluster was crucial for optimizing the management of drinking water distribution systems and controlling microbial growth.

Pollutant Removal in Variable HRT Using the Aerobic Biofilm (호기성 생물막을 이용한 HRT 변화에 따른 오염물질 제거)

  • Ahn, Kwang-Ho;Ko, Kwang-Baik;Kim, I-Tae;Kim, Kwang-Soo
    • Journal of Environmental Science International
    • /
    • v.21 no.12
    • /
    • pp.1495-1501
    • /
    • 2012
  • In this study, an experiment was conducted on influent water with low concentrations of organic matter, such as river water or secondary treatment water of a sewage treatment plant, according to HRT changes by using aerobic biofilm. In the biofilm process, as the biofilm increases in thickness, the inner membrane can be low in oxygen transfer rate and become anaerobic conditions, while the detachment of biomass from biofilm occurs. To overcome these limitations in the detachment of microorganisms in biofilm, the yarn, which was made from poly propylene(PP), was weaved and manufactured into a tube. Then, a test was carried out by injecting air so that the interior of the biofilm could create aerobic conditions. The results of the experiment showed that the removal efficiency of $TCOD_{cr}$ reached 66.1~81.2% by HRT 2hr, and 50.9 ~61.8% after HRT 1 hr. The removal efficiency of $SCOD_{cr}$ was 45.9 to 55.1% by HRT 1hr, and 26.1% in HRT 0.5hr, showing the highest removal efficiency in HRT 1hr. The SS removal efficiency was at 81.8 to 94.6%, and the effluent SS concentration was very low, indicating less than 2.2 mg/L in all HRT's. As a result, the $SCOD_{cr}$ and $NH_4{^+}$-N that were removed per specific surface area and attached to microbial biofilm showed the highest efficiency in HRT 1hr with 8.37 $gSCOD_{cr}/m^2{\cdot}d$, 2.93 $gNH_4{^+}-N/m^2{\cdot}d$. From the result of reviewing the characteristics of biofilm growth, microorganisms were found to be attached, and increased by 36 days. Later, they decreased in number through detachment, but showed a tendency to increase again 41 days later due to microbial reproduction.

Inhibition of nicotine-induced Streptococcus mutans biofilm formation by salts solutions intended for mouthrinses

  • Balhaddad, Abdulrahman A.;Melo, Mary Anne S.;Gregory, Richard L.
    • Restorative Dentistry and Endodontics
    • /
    • v.44 no.1
    • /
    • pp.4.1-4.10
    • /
    • 2019
  • Objectives: Biofilm formation is critical to dental caries initiation and development. The aim of this study was to investigate the effects of nicotine exposure on Streptococcus mutans (S. mutans) biofilm formation concomitantly with the inhibitory effects of sodium chloride (NaCl), potassium chloride (KCl) and potassium iodide (KI) salts. This study examined bacterial growth with varying concentrations of NaCl, KCl, and KI salts and nicotine levels consistent with primary levels of nicotine exposure. Materials and Methods: A preliminary screening experiment was performed to investigate the appropriate concentrations of NaCl, KCl, and KI to use with nicotine. With the data, a S. mutans biofilm growth assay was conducted using nicotine (0-32 mg/mL) in Tryptic Soy broth supplemented with 1% sucrose with and without 0.45 M of NaCl, 0.23 M of KCl, and 0.113 M of KI. The biofilm was stained with crystal violet dye and the absorbance measured to determine biofilm formation. Results: The presence of 0.45 M of NaCl, 0.23 M of KCl, and 0.113 M of KI significantly inhibited (p < 0.05) nicotine-induced S. mutans biofilm formation by 52%, 79.7%, and 64.1%, respectively. Conclusions: The results provide additional evidence regarding the biofilm-enhancing effects of nicotine and demonstrate the inhibitory influence of these salts in reducing the nicotine-induced biofilm formation. A short-term exposure to these salts may inhibit S. mutans biofilm formation.

Inhibitory Effect of Transition Metal Gallium [Ga(NO3)3] on Biofilm Formation by Fish Pathogens (전이금속 갈륨(Ga(NO3)3)을 이용한 biofilm을 형성하는 어류질병세균의 억제)

  • Kim, Dong-Hwi;Dharaneedharan, Subramanian;Jang, Young-Hwan;Heo, Moon-Soo
    • Microbiology and Biotechnology Letters
    • /
    • v.44 no.4
    • /
    • pp.535-539
    • /
    • 2016
  • The prevalence of pathogenic bacteria such as Streptococcus parauberis (Sp), Streptococcus iniae (Si), and Edwardsiella tarda (Et) in flounder fish farms in Jeju Island and their management by gallium treatment was studied. Sp, Si, and Et were found to exhibit a low rate of cell growth and high biofilm formation. Hence, in the present study, cell growth and biofilm formation were measured spectrophotometrically 72 h after the addition of different concentrations of gallium (2, 4, or 8 mg/ml). In addition, cell death was measured by resazurin and propidium iodide staining assays. The results showed that bacterial cell death increased and biofilm formation decreased with an increasing concentration of gallium. Hence, the present study signifies that the use of gallium against bacterial pathogens could be useful for disease management in flounder farms.