• 제목/요약/키워드: biofilm

검색결과 865건 처리시간 0.025초

미세플스틱 표면에 형성된 담수 유래 생물막 군집 고찰 (Investigation of microplastic biofilm communities originated from freshwater)

  • 최우단;히엔 티 뉴옌;김은주;조경진
    • 상하수도학회지
    • /
    • 제36권2호
    • /
    • pp.97-106
    • /
    • 2022
  • Recently microplastic (MP) biofilm is being attracted as an important environmental issue because it can act as a pollutant carrier in aqueous system. Therefore, this study investigated the MP biofilm communities originated from freshwater. The results showed the bacterial community structure of MP biofilm was distinctively different from the freshwater regardless of biofilm-forming condition and MP type. For MP biofilm communities exposed to raw freshwater, Solimonas variicoloris-like microbe, Frigidibacter albus-like microbe, Nitrospirillum amazonense-like microbe, and Pseudochroococcus couteii-like microbe became abundant, while Acinetobacter johnsonii, Macellibacteroides fermentans, and Sedimentibacter acidaminivorans-like microbe were found as major bacteria for MP biofilm communities exposed to organic rich condition. The results of this study suggest that the unique freshwater biofilm community could be formed on the MP surface.

Isolation and characterization of a lytic Salmonella Typhimurium-specific phage as a potential biofilm control agent

  • Su-Hyeon Kim;Mi-Kyung Park
    • 한국식품저장유통학회지
    • /
    • 제30권1호
    • /
    • pp.42-51
    • /
    • 2023
  • This study aimed to characterize a lytic Salmonella Typhimurium-specific (ST) phage and its biofilm control capability against S. Typhimurium biofilm on polypropylene surface. ST phage was isolated, propagated, and purified from water used in a slaughterhouse. The morphology of ST phage was observed via transmission electron microscopy. Its bactericidal effect was evaluated by determining bacterial concentrations after the phage treatment at various multiplicities of infection (MOIs) of 0.01, 1.0, and 100. Once the biofilm was formed on the polypropylene tube after incubation at 37℃ for 48 h, the phage was treated and its antibiofilm capability was determined using crystal violet staining and plate count method. The phage was isolated and purified at a final concentration of ~11 log PFU/mL. It was identified as a myophage with an icosahedral head (~104 nm) and contractile tail (~90-115 nm). ST phage could significantly decrease S. Typhimurium population by ~2.8 log CFU/mL at an MOI of 100. After incubation for 48 h, biofilm formation on polypropylene surface was confirmed with a bacterial population of ~6.9 log CFU/cm2. After 1 h treatment with ST phage, the bacterial population in the biofilm was reduced by 2.8 log CFU/cm2. Therefore, these results suggest that lytic ST phage as a promising biofilm control agent for eradicating S. Typhimurium biofilm formed on food contact surfaces.

Biofilm Formation Characteristics of Major Foodborne Pathogens on Polyethylene and Stainless Steel Surfaces

  • Kim, Hyeong-Eun;Kim, Yong-Suk
    • 한국식품위생안전성학회지
    • /
    • 제35권2호
    • /
    • pp.195-204
    • /
    • 2020
  • 식중독 미생물이 polyethylene과 stainless steel의 표면에서 biofilm을 형성하는 특성에 대하여 온도와 시간이 미치는 영향을 조사하였다. 식중독 미생물 6종(Bacillus cereus, Listeria monocytogenes, Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, and Salmonella Typhimurium) 32균주를 대상으로 예비실험을 하여 각 종별로 biofilm 형성능이 강한 1균주씩을 선발하였다. 시험한 식중독 미생물 6종 모두 온도가 증가함에 따라 biofilm 형성능이 증가하였으며, 식중독 미생물의 종류와 polyethylene 및 stainless steel의 표면에 따른 차이는 일관된 경향을 나타내지 않았다. E. coli와 P. aeruginosa가 polyethylene 표면에서 biofilm을 형성하는 능력은 stainless steel 표면에서 보다 유의적으로 높았다. 식중독 미생물은 표면에 균을 접종했을 때 바로 biofilm을 형성하였으며, E. coli, P. aeruginosa 및 S. Typhimurium은 접종 1시간 후에 모든 표면에서 biofilm을 형성하였다. Biofilm 형성 7일 후, S. aureus를 제외한 나머지 균주는 polyethylene과 stainless steel 표면에서 생존률에 차이가 없었다. 시험한 6종의 식중독 미생물의 경우 biofilm을 형성하는 능력은 균의 종류 및 polyethylene과 stainless steel 표면에 따라 다르게 나타났다.

쌀로부터 $Bacillus$ $cereus$ Group의 분리와 Biofilm 형성 특성 (Detection of $Bacillus$ $cereus$ Group from Raw Rice and Characteristics of Biofilm Formation)

  • 김진영;유혜림;이영덕;박종현
    • 한국식품영양학회지
    • /
    • 제24권4호
    • /
    • pp.657-663
    • /
    • 2011
  • 본 연구에서는 서울, 경기, 강원도, 충남 지역의 벼를 수집하여 쌀겨와 현미에서의 $B.$ $cereus$ group을 분리하였으며, 분포분석을 통해 작물의 오염 정도를 알아보았고, biofilm 형성시 특성을 연구하였다. $B.$ $cereus$는 총 26개의 시료 가운데 쌀에서 34.6%, 쌀겨에서 50.0%로 가장 높은 분포도를 나타냈으며, $B.$ $thuringiensis$는 쌀에서 3.9%, 쌀겨에서 23%의 분포를 보였다. 분리된 균주의 biofilm 형성 능력 실험에서는 시간이 지남에 따라 biofilm 형성 정도가 증가하였으며, 표준 균주에 비해 분리 균주가 biofilm 형성 능력이 높은 것으로 나타났다. 또한 biofilm이 형성된 $B.$ $cereus$의 경우 항생제와 항균제 처리에 따른 최소저해농도는 부유 세균에 비해 대체적으로 높은 내성을 나타내는 것으로 확인되었다.

Spatial Pattern of Copper Phosphate Precipitation Involves in Copper Accumulation and Resistance of Unsaturated Pseudomonas putida CZ1 Biofilm

  • Chen, Guangcun;Lin, Huirong;Chen, Xincai
    • Journal of Microbiology and Biotechnology
    • /
    • 제26권12호
    • /
    • pp.2116-2126
    • /
    • 2016
  • Bacterial biofilms are spatially structured communities that contain bacterial cells with a wide range of physiological states. The spatial distribution and speciation of copper in unsaturated Pseudomonas putida CZ1 biofilms that accumulated 147.0 mg copper per g dry weight were determined by transmission electron microscopy coupled with energy dispersive X-ray analysis, and micro-X-ray fluorescence microscopy coupled with micro-X-ray absorption near edge structure (micro-XANES) analysis. It was found that copper was mainly precipitated in a $75{\mu}m$ thick layer as copper phosphate in the middle of the biofilm, while there were two living cell layers in the air-biofilm and biofilm-medium interfaces, respectively, distinguished from the copper precipitation layer by two interfaces. The X-ray absorption fine structure analysis of biofilm revealed that species resembling $Cu_3(PO_4)_2$ predominated in biofilm, followed by Cu-Citrate- and Cu-Glutathione-like species. Further analysis by micro-XANES revealed that 94.4% of copper were $Cu_3(PO_4)_2$-like species in the layer next to the air interface, whereas the copper species of the layer next to the medium interface were composed by 75.4% $Cu_3(PO_4)_2$, 10.9% Cu-Citrate-like species, and 11.2% Cu-Glutathione-like species. Thereby, it was suggested that copper was initially acquired by cells in the biofilm-air interface as a citrate complex, and then transported out and bound by out membranes of cells, released from the copper-bound membranes, and finally precipitated with phosphate in the extracellular matrix of the biofilm. These results revealed a clear spatial pattern of copper precipitation in unsaturated biofilm, which was responsible for the high copper tolerance and accumulation of the biofilm.

Removal of Salmonella Typhimurium Biofilm from Food Contact Surfaces Using Quercus infectoria Gall Extract in Combination with a Surfactant

  • Damrongsaktrakul, Peetitas;Ruengvisesh, Songsirin;Rahothan, Arewan;Sukhumrat, Nuttamon;Tuitemwong, Pravate;Phung-on, Isaratat
    • Journal of Microbiology and Biotechnology
    • /
    • 제31권3호
    • /
    • pp.439-446
    • /
    • 2021
  • Quercus infectoria (nutgall) has been reported to possess antimicrobial activities against a wide range of pathogens. Nevertheless, the biofilm removal effect of nutgall extract has not been widely investigated. In this study, we therefore evaluated the effect of nutgall extract in combination with cetrimonium bromide (CTAB) against preformed biofilm of Salmonella Typhimurium on polypropylene (PP) and stainless steel (SS) coupons in comparison with other sanitizers. The minimum inhibitory concentration (MIC) and the minimum bactericidal concentration (MBC) of nutgall extract and surfactants (CTAB and sodium dodecyl sulfate; SDS) were assessed. CTAB showed a more efficient antimicrobial activity than SDS and was selected to use in combination with nutgall extract for removing biofilm. To determine the biofilm removal efficacy, the PP and SS coupons were individually submerged in 2x MBC of nutgall extract (256 mg/ml) + 2x MBC of CTAB (2.5 mg/ml), nutgall extract alone (256 mg/ml), CTAB alone (2.5 mg/ml), distilled water, and 100 ppm sodium hypochlorite for 5, 15, and 30 min. The remaining sessile cells in biofilm were determined. Overall, the greatest biofilm removal efficacy was observed with nutgall extract + CTAB; the biofilm removal efficacy of sanitizers tended to increase with the exposure time. The SEM analysis demonstrated that S. Typhimurium biofilm on PP and SS coupons after exposure to nutgall extract + CTAB for 30 min displayed morphological alterations with wrinkles. This study suggests nutgall extract + CTAB may be an alternative to commonly used sanitizers to remove biofilm from food contact surfaces in the food industry and household.

Anti-Biofilm Activity of Grapefruit Seed Extract against Staphylococcus aureus and Escherichia coli

  • Song, Ye Ji;Yu, Hwan Hee;Kim, Yeon Jin;Lee, Na-Kyoung;Paik, Hyun-Dong
    • Journal of Microbiology and Biotechnology
    • /
    • 제29권8호
    • /
    • pp.1177-1183
    • /
    • 2019
  • Grapefruit seed extract (GSE) is a safe and effective preservative that is used widely in the food industry. However, there are few studies addressing the anti-biofilm effect of GSE. In this study, the anti-biofilm effect of GSE was investigated against biofilm-forming strains of Staphylococcus aureus and Escherichia coli. The GSE minimum inhibitory concentration (MIC) for S. aureus and E. coli were $25{\mu}g/ml$ and $250{\mu}g/ml$, respectively. To investigate biofilm inhibition and degradation effect, crystal violet assay and stainless steel were used. Biofilm formation rates of four strains (S. aureus 7, S. aureus 8, E. coli ATCC 25922, and E. coli O157:H4 FRIK 125) were 55.8%, 70.2%, 55.4%, and 20.6% at $1/2{\times}MIC$ of GSE, respectively. The degradation effect of GSE on biofilms attached to stainless steel coupons was observed (${\geq}1$ log CFU/coupon) after exposure to concentrations above the MIC for all strains and $1/2{\times}MIC$ for S. aureus 7. In addition, the specific mechanisms of this anti-biofilm effect were investigated by evaluating hydrophobicity, auto-aggregation, exopolysaccharide (EPS) production rate, and motility. Significant changes in EPS production rate and motility were observed in both S. aureus and E. coli in the presence of GSE, while changes in hydrophobicity were observed only in E. coli. No relationship was seen between auto-aggregation and biofilm formation. Therefore, our results suggest that GSE might be used as an anti-biofilm agent that is effective against S. aureus and E. coli.

The Effects of Biofilm Care on Subgingival Bacterial Motility and Halitosis

  • Kim, Yu-Rin
    • 치위생과학회지
    • /
    • 제19권3호
    • /
    • pp.162-169
    • /
    • 2019
  • Background: Oral diseases are caused by various systemic and local factors, the most closely related being the biofilm. However, the challenges involved in removing an established biofilm necessitate professional care for its removal. This study aimed to evaluate and compare the effects of professional self and professional biofilm care in healthy patients to prevent the development of periodontal diseases. Methods: Thirty-seven patients who visited the dental clinic between September 2018 and February 2019 were included in this study. Self-biofilm care was performed by routine tooth brushing and professional biofilm care was provided using the toothpick method (TPM) or the oral prophylaxis (OP) method using a rubber cup. Subgingival bacterial motility and halitosis (levels of hydrogen sulfide, $H_2S$; methyl mercaptan, $CH_3SH$; and di-methyl sulfide, $(CH_3)_2S$) were measured before, immediately after, and 5 hours after the preventive treatment in the three groups. Repeated measures analysis of variance test was performed to determine significant differences among the groups. Results: TPM was effective immediately after the prevention treatment, whereas OP was more effective after 5 hours (proximal surfaces, F=16.353, p<0.001; smooth surfaces, F=66.575, p<0.001). The three components responsible for halitosis were effectively reduced by professional biofilm care immediately after the preventive treatment; however, self-biofilm care was more effective after 5 hours ($H_2S$, F=3.564, p=0.011; $CH_3SH$, F=6.657, p<0.001; $(CH_3)_2S$, F=21.135, p<0.001). Conclusion: To prevent oral diseases, it is critical to monitor the biofilm. The dental hygienist should check the oral hygiene status and the ability of the patient to administer oral care. Professional biofilm care should be provided by assessing and treating each surface of the tooth. We hope to strengthen our professional in biofilm care through continuous clinical research.

Application of acyl-homoserine lactones for regulating biofilm characteristics on PAO1 and multi-strains in membrane bioreactor

  • Wonjung, Song;Chehyeun, Kim;Jiwon, Han;Jihoon, Lee;Zikang, Jiang;Jihyang, Kweon
    • Membrane and Water Treatment
    • /
    • 제14권1호
    • /
    • pp.35-45
    • /
    • 2023
  • Biofilms significantly affect the performance of wastewater treatment processes in which biodegradability of numerous microorganisms are actively involved, and various technologies have been applied to secure microbial biofilms. Understanding changes in biofilm characteristics by regulating expression of signaling molecules is important to control and regulate biofilms in membrane bioreactor, i.e., biofouling. This study investigated effects of addition of acyl-homoserine lactones (AHL) as a controllable factor for the microbial signaling system on biofilm formation of Pseudomonas aeruginosa PAO1 and multiple strains in membrane bioreactor. The addition of three AHL, i.e., C4-, C6-, and C8-HSL, at a concentration of 200 ㎍/L, enhanced the formation of the PAO1 biofilm and the degree of increases in the biofilm formation of PAO1 were 70.2%, 76.6%, and 72.9%, respectively. The improvement of biofilm formation of individual strains by C4-HSL was an average of 68%, and the microbial consortia increased by approximately 52.1% in the presence of 200 ㎍/L C4-HSL. CLSM images showed that more bacterial cells were present on the membrane surface after the AHL application. In the COMSTAT results, biomass and thickness were increased up to 2.2 times (PAO1) and 1.6 times (multi-strains) by C4-HSL. This study clearly showed that biofilm formation was increased by the application of AHL to individual strain groups, including PAO1 and microbial consortia, and significant increases were observed when 50 or 100 ㎍/L AHL was administered. This suggests that AHL application can improve the biofilm formation of microorganisms, which could yield an enhancement in efficiency of biofilm control, such as in various biofilm reactors including membrane bioreactor and bioflocculent systems in water/wastewater treatment processes.

Intramammary preparation of enrofloxacin hydrochloride-dihydrate for bovine mastitis (biofilm-forming Staphylococcus aureus)

  • Diana Cordova-Gonzalez;Edgar Alfonseca-Silva;Lilia Gutierrez;Graciela Tapia-Perez;Hector Sumano
    • Journal of Veterinary Science
    • /
    • 제25권1호
    • /
    • pp.6.1-6.11
    • /
    • 2024
  • Background: Chronic bovine mastitis is linked to biofilm-producing Staphylococcus aureus (bp-Sa) or Staphylococcus coagulase-negative (bp-Scn). Objectives: Bp-Sa and bp-Scn were treated with intramammary preparations of either enrofloxacin HCl·2H2O-dimethyl-sulfoxide-chitosan (enro-C/DMSO/chitosan) or enro-C alone. Their potential to inhibit and degrade biofilm formation in vitro was also assessed. Methods: Milk samples were obtained from the affected quarters in a herd. Phenotypical and genotypical identifications as biofilm-producing Staphylococcus species were carried out. Enro-C/DMSO/chitosan and enro-C alone were assessed to determine their in vitro efficacy in interfering with biofilm formation and their bactericidal effects. A prolonged eight-day treatment with a twice-daily intramammary insertion of 10 mL of enro-C/DMSO/chitosan or enro-C alone was set to evaluate the clinical and bacteriological cures on day 10 in 15 cows per group and the biofilm-inhibiting ability. Results: Fifty-seven percent of the isolates were identified as Staphylococcus spp., of which 50% were bp-Sa, 46% bp-Scn, and 4% Staphylococcus pseudintermedius. One hundred percent of the S. aureus isolated and 77% of Staphylococcus coagulase-negative were biofilm producers. In both groups, the icaA and icaD biofilm-producing genes were identified. The experimental preparation could inhibit biofilm formation, degrade mature biofilms, and have well-defined microbicidal effects on planktonic and biofilm bacteria. The respective clinical and bacteriological cure rates were 100% and 80% for enro-C/DMSO/chitosan and 41.7% and 25% for enro-C alone. Conclusions: Enro-C/DMSO/chitosan eliminates bp-Sa and bp-Scn from cases of chronic bovine mastitis.