• Title/Summary/Keyword: biofilm stability

Search Result 25, Processing Time 0.022 seconds

Role of Exopolymeric Substances (EPS) in the Stability of the Biofilm of Thiomonas arsenivorans Grown on a Porous Mineral Support

  • Michel, Caroline;Garrido, Francis;Roche, Emilie;Belval, Sylvain Challan;Dictor, Marie-Christine
    • Journal of Microbiology and Biotechnology
    • /
    • v.21 no.2
    • /
    • pp.183-186
    • /
    • 2011
  • Biochemical methods were selected to evaluate the role of exopolymeric substances in the stability of biofilms used in bioremediation processes. Biofilms of Thiomonas arsenivorans formed on pozzolana were thus treated with pronase (protein target), lectins (Con A or PNA), calcofluor or periodic acid (polysaccharides target), DNase (DNA target), and lipase (triglycerides target). Neither protease nor DNase treatments had any effect on bacterial adhesion. Lectins and calcofluor treatments mainly affected young biofilms. Lipase treatment had a noticeable effect on biofilm stability whatever the biofilm age. Results suggest that it would be an increased resistance of mature biofilms that protects them from external attacks.

Physical Properties of Biofilm Manufactured from Gelatin of Yellowfin Tuna Thunnus albacares Skin Treated with Acetic Acid (아세트산 처리 황다랑어(Thunnus albacares) 껍질 유래 젤라틴으로 제조한 바이오필름의 물리적 특성)

  • Kim, Ju-Yeon;Kim, Do-Hyeong;Kim, Seon-Bong
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.44 no.6
    • /
    • pp.591-596
    • /
    • 2011
  • The present study examined the physical properties of biofilms manufactured from yellowfin tuna Thunnus albacares skin gelatin with the aim of developing a biofilm from fisheries by-products to replace mammalian sources. The physical properties of biofilms from yellowfin tuna gelatin were compared with those of biofilms from porcine gelatin. The yellowfin tuna gelatin biofilm exhibited higher tensile strength (69.08 MPa) and greater elongation (14.32%) than did porcine gelatin biofilm (50.50 MPa and 10.21%, respectively). The ${\Delta}E$ and YI (yellowness index) Huntercolor values of yellowfin tuna gelatin biofilm were three-fold and 15-fold higher, respectively, than values for porcine gelatin biofilm. The opacity value of yellowfin tuna gelatin biofilm was higher than that of porcine gelatin biofilm. The stability against water of yellowfin tuna gelatin biofilm was lower than that of porcine gelatin biofilm at pH 3 to pH 11. Thermogravimetric analysis (TGA) indicated that the thermal stability of the biofilms was about $270^{\circ}C$ for porcine gelatin biofilm and about $250^{\circ}C$ for yellowfin tuna gelatin biofilm.

A study on the treatment of highly-emulsified oily wastewater by an inverse fluidized-bed biofilm reactor (역 유동층 생물막 반응기를 이용한 유분함유폐수 처리에 관한 연구)

  • 최윤찬;나영수
    • Journal of Environmental Science International
    • /
    • v.5 no.3
    • /
    • pp.361-367
    • /
    • 1996
  • An inverse fluidized-bed biofilm reactor (IFBBR) was used for the treatment of highly-emulsified oily wastewater. When the concentration of biomass which was cultivated in the synthetic wastewater reached to 6000 mg/1, the oily wastewater was employed to the reactor with a input COD concentration range of 50 mg/1 to 1900 mg/l. Virtually the IFBBR showed a high stability during the long operation period although soma fluctuation was observed. The COD removal efficiency was maintained over 9% under the condition that organic loading rate should be controlled under the value of 1.5 kgCOD/$m^3$/day, and F/M ratio is 1.0 kgCOD/kgVSS/day at $22{\circ}C$ and HRT of 12 hrs. As increasing organic loading rates, the biomass concentration was decreased steadily with decreasing of biofilm dry density rather than biofilm thickness. Based on the experimental jesuits, it was suggested that the decrease in biofilm dry density was caused by a loss of biomass inside the biofilm.

  • PDF

Effect of Hydraulic Loading on Biofilm Characteristics in an Inverse Fluidized Bed Biofilm Reactor (역 유동층 생물막 반응기에서 수리학적 부하가 생물막 성상에 미치는 영향)

  • 김동석;최윤찬
    • Journal of Environmental Science International
    • /
    • v.4 no.3
    • /
    • pp.221-228
    • /
    • 1995
  • Stability of reactor and effect on biofilm characteristics were investigated by varying the hydraulic residence time in an inverse fluidized bed biofilm reactor(IFBBR). The SCOD removal efficiency was maintained above 90 % in the HRT range of 12hr to 2hr, but the TCOD removal efficiency was dropped down to 50% because of biomass detachment from overgrown bioparticles. The reactor was stably operated up to the conditions of HRT of 2hr and F/M ratio of 4.5kgCOD/$m^3$/day, but above the range there was an abrupt increase of filamentous microorganisms. The optimum biofilm thickness and the biofilm dry density in this experiment were shown as $200\mu\textrm{m}$ and $0.08 g/cm^3$, respectively. The substrate removal rate of this system was found as 1st order because the biofilm was maintained slightly thin by the increased hydraulic loading rate.

  • PDF

Control of Excessive Biofilm for the Treatment of High Strength Organic Wastewater by Biofilm Process (생물막공법에 의한 고농도 유기폐수 처리시 생물막 과부착 제어)

  • 임재명;권재혁;한동준
    • Journal of environmental and Sanitary engineering
    • /
    • v.10 no.3
    • /
    • pp.67-77
    • /
    • 1995
  • This study was performed for minimization of excessive biofilm effects at the high strength organic wastewater treatment. As a results of biofilm attachment experiment using piggery wastewater, aggravation of water quality due to excessive biofilm showed after 15 days of operating times.4 excessive biofilm phase, the equivalent biofilm thickness and VSS contents per unit aura were observed in the range of 1,100 to $1,200{\mu}m$ and 2.5 to 3.0mg $VSS/cm^{2}$, respectively. In the aerobic fixed biofilm reactor/anoxic fixed biofilm reactor(AFBR/ANFBR) process with endogenous respiration phase, the BOD removal efficiency was obtained more than 90 percentage at the surface loading rate and volumetric loading rate of the AFBR maintained less than 17 g $BOD/m^{2}{\cdot}$day and 1.7kg $BOD/m^{3}{\cdot}$day, respectively. The removal efficiency of TKN and $NH_{3}$-N at the loading rates below 5.60g $NH_{3}-N/m^{2}{\cdot}day$ and 0.56kg $NH_{3}-N/m^{3}{\cdot}$day were above 76 percentage and 82 percentage, respectively. In order to reduced sludge production rate and aggravation of water quality, endogenous respiration phase was accepted at first AFBR reactor. As a results of this operating condition, sludge production was minimized and removal efficiency was maintained stability.

  • PDF

Catalytic Biofilms on Structured Packing for the Production of Glycolic Acid

  • Li, Xuan Zhong;Hauer, Bernhard;Rosche, Bettina
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.2
    • /
    • pp.195-204
    • /
    • 2013
  • While structured packing modules are known to be efficient for surface wetting and gas-liquid exchange in abiotic surface catalysis, this model study explores structured packing as a growth surface for catalytic biofilms. Microbial biofilms have been proposed as selfimmobilized and self-regenerating catalysts for the production of chemicals. A concern is that the complex and dynamic nature of biofilms may cause fluctuations in their catalytic performance over time or may affect process reproducibility. An aerated continuous trickle-bed biofilm reactor system was designed with a 3 L structured packing, liquid recycling and pH control. Pseudomonas diminuta established a biofilm on the stainless steel structured packing with a specific surface area of 500 $m^2m^{-3}$ and catalyzed the oxidation of ethylene glycol to glycolic acid for over two months of continuous operation. A steady-state productivity of up to 1.6 $gl^{-1}h^{-1}$ was achieved at a dilution rate of 0.33 $h^{-1}$. Process reproducibility between three independent runs was excellent, despite process interruptions and activity variations in cultures grown from biofilm effluent cells. The results demonstrate the robustness of a catalytic biofilm on structured packing, despite its dynamic nature. Implementation is recommended for whole-cell processes that require efficient gas-liquid exchange, catalyst retention for continuous operation, or improved catalyst stability.

Synthesis of Cysteine Capped Silver Nanoparticles by Electrochemically Active Biofilm and their Antibacterial Activities

  • Khan, Mohammad Mansoob;Kalathil, Shafeer;Lee, Jin-Tae;Cho, Moo-Hwan
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.8
    • /
    • pp.2592-2596
    • /
    • 2012
  • Cysteine capped silver nanoparticles (Cys-AgNPs) have been synthesized by employing electrochemically active biofilm (EAB), $AgNO_3$ as precursor and sodium acetate as electron donor in aqueous solution at $30^{\circ}C$. Cys-AgNPs of 5-10 nm were synthesized and characterized by UV-Vis, FT-IR, XRD and TEM. Capping of the silver nanoparticles with cysteine provides stability to nanoparticles by a thiolate bond between the amino acid and the nanoparticle surface and hydrogen bonding among the Cys-AgNPs. In addition, the antibacterial effects of as-synthesized Cys-AgNPs have been tested against two pathogenic bacteria Escherichia coli (O157:H7) and Pseudomonas aeruginosa (PAO1). The results demonstrate that the as-synthesized Cys-AgNPs can proficiently inhibit the growth and multiplication of E. coli and P. aeruginosa.

Change of Paradigms in Caries-Associated Bacteria in the Caries Process: Ecological Perspectives (치아우식증 유발 균주에 대한 패러다임의 변화: 생태학적 관점)

  • Kim, Hee-Eun
    • Journal of dental hygiene science
    • /
    • v.14 no.2
    • /
    • pp.87-93
    • /
    • 2014
  • Dental plaque resides passively at a site and makes an active contribution to the maintenance of health. The bacterial composition of plaque remains relatively stable despite regular exposure to minor environmental stress. This stability, homeostasis is due to a dynamic balance of microbial interactions. However, the homeostasis can break down, leading to shifts in the balance of the microflora. This change can be a sign of initial dental caries. It is proposed that disease can be prevented or treated not only by targeting the putative pathogens but also by interfering with the processes that drive the breakdown in homeostasis. It is essential to understand the plaque as a mixed species biofilm. In this essay I reviewed an extension of the caries ecological hypothesis to explain the relation between dynamic changes in the phenotypic/genotypic properties of plaque bacteria and the demineralization and remineralization balance of the dental caries process. We will have the strategies to impact significantly on clinical practice as understanding dental biofilm.

The Effect of Chemical Treatments on Biodeterioration of Stone Cultural Properties

  • Kim, Gwang Hoon;Klotchkova, Tatiana A.;Suh, Man-Cheol
    • Korean Journal of Environmental Biology
    • /
    • v.19 no.2
    • /
    • pp.101-105
    • /
    • 2001
  • The biodeterioration with blue-green algae has been studied since 1997 up to 2000 in the tomb of King Mooryong in Kongiu, Korea. Biodeterioration in the tomb initially started from the formation of micro-organismic biofilm that had been suggested to make minor changes on the stone surface. This study revealed that the biofilm formed by microorganisms could result in permanent damages on stone cultural properties. The application of a chemical, 'K2Ol', developed by the author successfully removed fouling of biofilm on the surfaces of stone cultural properties. When small pieces of granite stone were embedded in the solution to study the side effects of the chemicals for a period of three months, the mechanical stability was 0.97 compared to control and there was no change in color. Biodeterioration is one of the most harmful factors that decrease the value of stone cultural properties but it may be treated with a development of proper chemicals.

  • PDF

Anti-Biofilm Activity of Origanum Vulgare Supercritical Fluid Extracts and Cosmetic Active Ingredients Development (오레가노 초임계추출물의 황색포도상구균 바이오필름 형성 억제능을 이용한 기능성 화장품 소재의 개발)

  • Park, Shinsung;Lee, Kwang Won;Park, Su In;Shin, Moon Sam
    • The Journal of the Convergence on Culture Technology
    • /
    • v.8 no.6
    • /
    • pp.605-614
    • /
    • 2022
  • In this study, oregano was extracted by supercritical extraction and hydrothermal extraction method. In vitro experiments such as antimicrobial and antioxidant activity test were performed. As a result of the disc diffusion method, only the supercritical extracts formed a clear zone. The MIC for S. aureus was found only in the supercritical fluid extracts and it was 1000 ㎍/mL. The hydrothermal extract's MIC is 125 ㎍/mL for C. acnes. Through biofilm inhibition assay, we found that the supercritical fluid oregano extracts inhibit the biofilm of S. aureus by more than 70% even at low concentrations of 125 ㎍/mL. On the other hand, the antioxidant ability of the hydrothermal extract was better than that of the supercritical fluid extracts. Furthermore, we tried to make a skincare ingredient for atopic dermatitis by utilizing the S. aureus biofilm inhibitory ability of oregano supercritical fluid extracts. Liposome was used to overcome the low solubility of the oregano supercritical fluid extracts and increase stability.