• Title/Summary/Keyword: biofouling

Search Result 89, Processing Time 0.037 seconds

Culture of Microalgae using Anti-biofouling Photobioreator (Anti-biofouling 광생물반응기를 이용한 미세조류 배양 연구)

  • Nah, In-Wook;Suh, Min-Ho;Ahn, Soo-Han;Hwang, Kyung-Yub
    • KSBB Journal
    • /
    • v.26 no.6
    • /
    • pp.561-564
    • /
    • 2011
  • In this study, we carried out the development of high performance photobioreactor, which can be used to develop the biological $CO_2$ fixation technology as well as the renewable biofuels, the microalgae Botryococcus braunii. When B. Braunii was cultured in Anti-biofouling photobioreator, growth rate of it showed about 3 times higher than that of bubble column photobioreactor at the same conditions. In case of photobioreactor without bead, after 3 days culture time, biofouling occur rapidly in wall of the photobioreactor. However, with bead 5% (V/V), biofouling do not occur all experimental days.

Preliminary Experimental Study on Biofouling in Real Sea Environment (실해역 환경에서 생물부착에 관한 기초실험 연구)

  • Jung, Dong-Ho;Kim, Ah-Ree;Moon, Deok-Soo;Lee, Seung-Won;Kim, Hyeon-Ju;Ham, Yun-Ho
    • Journal of Ocean Engineering and Technology
    • /
    • v.23 no.6
    • /
    • pp.39-43
    • /
    • 2009
  • A flow and low temperature of deep seawater the biofouling properties in a seawater environment of different materials, such as a steel pipe, polyethylene pipe, and nylon net, used for ocean industries. Experiments in a real sea environment were performed to grasp the quantitative and qualitative biofouling from diatoms attached to materials by measuring the Chlorophyll-a density. Experimental samples were placed under five types of ocean environmental conditions and analyzed every month for five months. It is shown that the biofouling by diatoms was strongly affected by the seawater temperature for all of the experimental samples. It was found that diatoms mainly adhered to the nylon net, while crustaceans prefer polyethylene, under a high temperature condition. It is believed that the biofouling properties are strongly related to the surface roughness of a material. The biofouling under the low temperature condition of deep seawater was rare and stable for the experimental periods. The inside of a pipe conveying deep seawater can be presumed to remain clear without biofouling on the condition of a flow and low temperature of deep seawater.

Anti-biofouling properties of silver nano-particle coated artificial light-weight aggregates (은 나노 입자가 코팅된 인공경량골재의 생물오손 방지 특성)

  • Kim, Seongyeol;Kim, Yooteak;Park, Yongjoon
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.25 no.5
    • /
    • pp.212-217
    • /
    • 2015
  • Ships and marine structures have a lot of problems in their high maintenance and operating cost by biofouling. A biofouling occurrs by the adhesion of marine microorganism, algae and bacteria. In this study, the aim is to prevent or to reduce the biofouling phenomena through silver nano-particle coating on artificial light-weight aggregates and geopolymer. The antibacterial activity on them is tested according to ASTM E2149-2013a. The test results showed, it is estimated that silver nano-particles removed 99.99 % of bacteria. Specimens were set up in the sea side of field test area in Korea Institute of Ocean Science and Technology (KIOST) and have been observed for five months. The anti-biofouling effect and difference in weight change rate have been detected two months later after the installation. Because silver nanoparticles inhibit bacterial growth and kill the cells by destroying bacterial membranes, silver nano-particle coating on artificial lightweight aggregates is a well-suited and eco-friendly method for preventing biofouling in the sea up to 5 months.

Measure the number of Biofouling based on digital images (디지털 영상기반 해양생물 개체 수 측정)

  • Choi, Hyun-jun
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2018.05a
    • /
    • pp.475-476
    • /
    • 2018
  • In this paper, we propose a method to measure the number of biofouling attached to underwater structures. This method measures the number of biofouling based on digital images captured in underwater. The number of biofouling was measured after correcting the image quality of underwater images for accurate population counting. In order to measure the number of biofouling, Maxima value in the image was found.

  • PDF

A Study on the Biofouling Control in Membrane Processes Using High Voltage Impulse (고전압 임펄스를 적용한 막분리 공정에서의 생물막 오염 제어에 관한 연구)

  • Lee, Ju-Hun;Kim, Jun-Young;Yi, Chin-Woo;Lee, June-Ho;Chang, In-Soung
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.25 no.10
    • /
    • pp.67-75
    • /
    • 2011
  • Although membrane technologies are widely applied to the water and wastewater treatment processes, strategy for the control of membrane biofouling is strongly required. In this study, a possibility of control of membrane biofouling using HVI(High Voltage Impulse) was verified based on the inactivation of microorganisms by the HVI. The HVI system was consisted of power supply, voltage amplifier, impulse generator and disinfection chamber and the model microorganism was E. coli. When 15[kV/cm] of electric fields was applied to the E. coli solution, inactivation of the microorganism was found. A possibility of the control of membrane biofouling using HVI was verified with experiments of membrane filtration with and without exposure of the HVI to biomass solution. Another membrane filtration experiments with the contaminated membranes by E. coli solution were carried out and indicate that the HVI could be used as an alternative method for membrane biofouling control. A series of simulation of the electric fields between electrodes and microorganisms was carried out for the visualization of the disinfection that showed where the electric fields are formed.

Reduction of biofouling using vanillin as a quorum sensing inhibitory agent in membrane bioreactors for wastewater treatment

  • Nam, AnNa;Kweon, JiHyang;Ryu, JunHee;Lade, Harshad;Lee, ChungHak
    • Membrane and Water Treatment
    • /
    • v.6 no.3
    • /
    • pp.189-203
    • /
    • 2015
  • Membrane biofouling impedes wide application of membrane bioreactor (MBR) for wastewater treatment. Recently, quorum sensing (QS) mechanisms are accounted for one of major mechanisms in biofouling of MBRs. In this study, vanillin was applied to investigate reduction of biofouling in MBRs. MBR sludge was analyzed to contain QS signal molecules by cross-feeding biosensor assay and HPLC. In addition, the inhibitory activity of vanillin against bacterial quorum sensing was verified using an indicator strain CV026. The vanillin doses greater than 125 mg/L to 100 mL of MBR sludge showed 25% reduction of biofilm formed on the membrane surfaces. Two MBRs, i.e., a typical MBR as a control and an MBR with vanillin, were operated. The TMP increases of the control MBR were more rapid compared to those of the MBR with the vanillin dose of 250 mg/L. The treatment efficiencies of the two MBRs on organic removal and MLSS were maintained relatively constant. Extracellular polymeric substance concentrations measured at the end of the MBR operation were 173 mg/g biocake for the control MBR and 119 mg/g biocake for the MBR with vanillin. Vanillin shows great potential as an anti-biofouling agent for MBRs without any interference on microbial activity for wastewater treatment.

A Method of Biofouling Population Estimation on Marine Structure (수중구조물 표면에 부착된 해양생물의 개체 수 예측 방법)

  • Choi, Hyun-Jun;Kim, Gue-Chol;Kim, Bu-Ki
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.13 no.4
    • /
    • pp.845-850
    • /
    • 2018
  • In this paper, we propose a method to estimate the number of biofouling attached to the surface of marine structures. This method estimates the number of biofouling by calculating the region maxima using images taken in underwater. To do this, we analyze the correlation between the region maxima and the number of biofouling. The analysis showed that there is a significant correlation between the number of region maxima and the number of biofouling. By using the results of this analysis, the experiments were conducted on images taken in the underwater. Experimental results show that the higher the region maxima of the image, is greater than the number of biofouling in the image. The proposed method can be used as an important technology in computer vision for underwater images.

Study on the control of marine biofouling developed on the surface of porous ceramics (세라믹 다공체 표면에 발생하는 해양 생물 오손 억제에 관한 연구)

  • Kang, Jimin;Kang, Seunggu;Kim, YooTack
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.25 no.5
    • /
    • pp.218-224
    • /
    • 2015
  • Recently, removing methods of red tide has been attempted by filtering the organisms using the ceramic porous bodies. However, the marine biofouling could be developed on the surfaces of porous ceramic body after use for more than one month, and it might decrease the function of the specimen. In this paper, a method of inhibiting marine biofouling by changing the physical properties or surface-modification of ceramic porous body was studied. After experiment with six different ceramic porous bodies, it was found that the specimen of lower porosity and water absorption showed the least amount of biofouling. In addition, by increasing the surface roughness with silica particles bonded to the surface of specimen, the amount of biofouling caused by large marine life such as barnacle and mussel could be decreased. On the other hand, when the surface of specimen was coated and fused by glass powder, the amount of biofouling was rather increased. This might be due to eluted inorganic ions from the glass which can promote the growth of the microorganism. In conclusion, the environmental-friendly methods to reduce the amount of marine biofouling, such as controlling the physical properties and the surface roughness of the porous ceramics, can be possible without the use of dangerous substances. So it is expected for the results obtained to be applicable to a marine structure.

Surface characterization and evaluation of biofouling inhibition of reverse osmosis membranes coated with Epigallocatechin gallate(EGCG)/vanillin (EGCG/바닐린 코팅 RO분리막의 표면 특성과 미생물막 억제능)

  • Jung, Jaehyun;Kim, Youngjin;Nam, Haewook;Kim, Yunjung;Lee, Eunsu;Lee, Younil;Kweon, Jihyang
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.28 no.6
    • /
    • pp.713-723
    • /
    • 2014
  • Biofouling in brackish water reverse osmosis (RO) membranes still needs extensive research to understand cause and mechanism and to obtain methods for reduction of its impact on RO applications. Natural compounds with biofilm formation inhibitory properties are being investigated. Two compounds, vanillin and Epigallocatechin gallate (EGCG), were selected due to their great potential on biofilm formation inhibition. Vanillin shows inhibition on quorum sensing mechanisms of biofilm formation. EGCG has potential to inactivate microbial activity. The two compounds were incorporated in typical polyamide reverse osmosis membranes and evaluated on flux behaviours and biofilm formation potential. The surface properties of membrane coated with vanillin were changed tremendously compared to those with EGCG. As a result, the flux was reduced substantially. The biofilm formation seems hindered with EGCG coated membranes compared to the virgin membranes. More research is needed to optimize coating methods applicable to RO membranes and to enhance biofouling reduction.

An Experimental Study of Non-Electrolysis Anti-Microfouling Technology Based on Bioelectric Effect

  • Young Wook Kim
    • Journal of Ocean Engineering and Technology
    • /
    • v.37 no.4
    • /
    • pp.172-179
    • /
    • 2023
  • Biofouling initiated by biofilm (slime) formation is a key challenge for practical ocean engineering and construction. This study evaluated a new anti-biofilm technology using bioelectricity. The anti-microfouling electrical technology is based on the principles of the bioelectric effect, known as the application of an electrostatic force for biofilm removal. Previously, the electricity was optimized below 0.82V to avoid electrolysis, which can prevent the production of biocides. A test boat comprised of microelectronics for electrical signal generation with electrodes for an anti-biofouling effect was developed. The tests were conducted in the West Sea of Korea (Wangsan Marina, Incheon) for three weeks. The surface biofouling was quantified. A significant reduction of fouling was observed under the bioelectric effect conditions, with approximately 30% enhanced prevention of fouling progress (P<0.05). This technology can be an alternative eco-friendly technique for anti-microfouling that can be applied for canals, vessels, and coastal infrastructure because it does not induce electrolysis.