• 제목/요약/키워드: bioreactor optimization

검색결과 59건 처리시간 0.033초

Inter-scale Observation and Process Optimization for Guanosine Fermentation

  • Chu, Ju;Zhang, Si-Liang;Zhuang, Ying-Ping
    • 한국미생물생명공학회:학술대회논문집
    • /
    • 한국미생물생명공학회 2005년도 2005 Annual Meeting & International Symposium
    • /
    • pp.233-244
    • /
    • 2005
  • Guanosine fermentation process can be well predicted and analyzed by the proposed state equations describing the dynamic change of a bioreactor. Pyruvate and alanine were found to be characteristically accumulated along with the decline of the guanosine formation rate during the mid-late phase of the process. The enzymological study of the main pathways in glucose catabolism and the quantitative stoichiometric calculation of metabolic flux distribution revealed that it was entirely attributed to the shift of metabolic flux from hexose monophosphate (HMP) pathway to glycolysis pathway. The process optimization by focusing on the restore of the shift of metabolic flux was conducted and the overcoming the decrease of oxygen uptake rate (OUR) was taken as the relevant factor of the trans-scale operation. As a result, the production of guanosinewas increased from 17 g/L to over 34 g/I.

  • PDF

Flux Optimization Using Genetic Algorithms in Membrane Bioreactor

  • Kim Jung-Mo;Park Chul-Hwan;Kim Seung-Wook;Kim Sang-Yong
    • Journal of Microbiology and Biotechnology
    • /
    • 제16권6호
    • /
    • pp.863-869
    • /
    • 2006
  • The behavior of submerged membrane bioreactor (SMBR) filtration systems utilizing rapid air backpulsing as a cleaning technique to remove reversible foulants was investigated using a genetic algorithm (GA). A customized genetic algorithm with suitable genetic operators was used to generate optimal time profiles. From experiments utilizing short and long periods of forward and reverse filtration, various experimental process parameters were determined. The GA indicated that the optimal values for the net flux fell between 263-270 LMH when the forward filtration time ($t_f$) was 30-37 s and the backward filtration time ($t_b$) was 0.19-0.27 s. The experimental data confirmed the optimal backpulse duration and frequency that maximized the net flux, which represented a four-fold improvement in 24-h backpulsing experiments compared with the absence of backpulsing. Consequently, the identification of a region of feasible parameters and nonlinear flux optimization were both successfully performed by the genetic algorithm, meaning the genetic algorithm-based optimization proved to be useful for solving SMBR flux optimization problems.

Optimization and High-level Expression of a Functional GST-tagged rHLT-B in Escherichia coli and GM1 Binding Ability of Purified rHLT-B

  • Ma Xingyuan;Zheng Wenyun;Wang Tianwen;Wei Dongzhi;Ma Yushu
    • Journal of Microbiology
    • /
    • 제44권3호
    • /
    • pp.293-300
    • /
    • 2006
  • The Escherichia coli heat-labile enterotoxin B subunit (HLT-B) is one of the most powerful mucosal immunogens and known mucosal adjuvants. However, the induction of high levels of HLT-B expression in E. coli has proven a difficult proposition. Therefore, in this study, the HLT-B gene was cloned from pathogenic E. coli and expressed as a fusion protein with GST (glutathion S-transferase) in E. coli BL2l (DE3), in an attempt to harvest a large quantity of soluble HLT-B. The culture conditions, including the culture media used, temperature, pH and the presence of lactose as an inducer, were all optimized in order to obtain an increase in the expression of soluble GST-rHLT-B. The biological activity of the purified rHLT-B was assayed in a series of GMI-ELISA experiments. The findings of these trials indicated that the yield of soluble recombinant GST-rHLT-B could be increased by up to 3-fold, as compared with that seen prior to the optimization, and that lactose was a more efficient alternative inducer than IPTG. The production of rHLT-B, at 92 % purity, reached an optimal level of 96 mg/l in a 3.7 L fermentor. The specific GM1 binding ability of the purified rHLT-B was determined to be almost identical to that of standard CTB.

Bioreactor를 이용한 담배세포 현탁배양에서 교반형태와 통기량이 미치는 영향 (Effect of Agitation and Aeration Rate on Nicotiana tabacum Suspension Cell Culture in Bioreactors)

  • 이상윤;김동일
    • KSBB Journal
    • /
    • 제14권5호
    • /
    • pp.534-538
    • /
    • 1999
  • 식물세포배양을 위한 bioreactor의 운전조건 최적화를 위해 Nicotiana tabacum 현탁세포를 model system으로 bioreator의 종류, 교반기의 형태, 그리고 통기량에 따른 세포생장을 관찰하였다. Bioreactor로는 stirred tank bioreactor과 airlift bioreactor를 사용하였으며 두가지 배양기 모두 flask에서의 생장보다 낮은 생장을 보였으며 stirred tank bioreactor보다는 airlift bioreator에서 높은 세포농도를 얻을 수 있었다. 교반기의 종류에 따른 세포의 생장은 큰 차이가 없었으나 hollowed paddle impeller를 사용하였을 경우에는 배양기간 동안 세포의 크기가 작게 유지되었다. 통기량을 0.30 vvm으로 유지하는 경우에 가장 좋은 세포생장을 관찰할 수 있었으며 1.0 vvm이상의 통기량에서는 과도한 foam의 형성과 세포의 갈색화 현상을 보이며 세포의 생장도 저해되었다. 또한 통기량이 증가할수록 세포크기지수가 감소하는 결과를 보였다.

  • PDF

Optimization of $\beta$-Galactosidase Production in Stirred Tank Bioreactor Using Kluyveromyces lactis NRRL Y-8279

  • Dagbagh, Seval;Goksungur, Yekta
    • Food Science and Biotechnology
    • /
    • 제18권6호
    • /
    • pp.1342-1350
    • /
    • 2009
  • This paper investigates the production and optimization of $\beta$-galactosidase enzyme using synthetic medium by Kluyveromyces lactis NRRL Y-8279 in stirred tank bioreactor. Response surface methodology was used to investigate the effects of fermentation parameters on $\beta$-galactosidase enzyme production. Maximum specific enzyme activity of 4,622.7 U/g was obtained at the optimum levels of process variables (aeration rate 2.21 vvm, agitation speed 173.4 rpm, initial sugar concentration 33.8 g/L, incubation time 24.0 hr). The optimum temperature and pH of the $\beta$-galactosidase enzyme produced under optimized conditions were $37^{\circ}C$ and pH 7.0, respectively. The enzyme was stable over a pH range of 6.0-7.5 and a temperature range of $25-37^{\circ}C$. The $K_m$ and $V_{max}$ values for O-nitrophenol-$\beta$-D-galactopyranoside (ONPG) were 1.20 mM and $1,000\;{\mu}mol/min{\cdot}mg$ protein, respectively. The response surface methodology was found to be useful in optimizing and determining the interactions among process variables in $\beta$-galactosidase enzyme production. Hence, this study fulfills the lack of using mathematical and statistical techniques in optimizing the $\beta$-galactosidase enzyme production in stirred tank bioreactor.

Development of a High-Titer Culture Medium for the Production of Cholesterol by Engineered Saccharomyces cerevisiae and Its Fed-Batch Cultivation Strategy

  • Wang, Ling-Xu;Zheng, Gao-Fan;Xin, Xiu-Juan;An, Fa-Liang
    • Journal of Microbiology and Biotechnology
    • /
    • 제32권9호
    • /
    • pp.1178-1185
    • /
    • 2022
  • Steroids are a class of compounds with cyclopentane polyhydrophenanthrene as the parent nucleus, and they usually have unique biological and pharmacological activities. Most of the biosynthesis of steroids is completed by a series of enzymatic reactions starting from cholesterol. Synthetic biology can be used to synthesize cholesterol in engineered microorganisms, but the production of cholesterol is too low to further produce other high-value steroids from cholesterol as the raw material and precursor. In this work, combinational strategies were established to increase the production of cholesterol in engineered Saccharomyces cerevisiae RH6829. The basic medium for high cholesterol production was selected by screening 8 kinds of culture media. Single-factor optimization of the carbon and nitrogen sources of the culture medium, and the addition of calcium ions, zinc ions and citric acid, further increased the cholesterol production to 192.53 mg/l. In the 5-L bioreactor, through the establishment of strategies for glucose and citric acid feeding and dissolved oxygen regulation, the cholesterol production was further increased to 339.87 mg/l, which was 734% higher than that in the original medium. This is the highest titer of cholesterol produced by microorganisms currently reported. The fermentation program has also been conducted in a 50-L bioreactor to prove its stability and feasibility.

Improved Optimization of Indirubin Production from Bioreactor Culture of Polygonum tinctorium

  • Chung, Choong Sik;Kim, Kyung Il;Bae, Geun Won;Lee, Youn Hyung;Lee, Hyong Joo;Chae, Young Am;Chung, In Sik
    • Journal of Applied Biological Chemistry
    • /
    • 제43권2호
    • /
    • pp.109-111
    • /
    • 2000
  • Effect of the two-stage operation and cell concentration on indirubin production was investigated using bioreactor culture of Polygonum tinctorium. Two-stage culture was operated successfully for 110 days without any adverse effects on continuous indirubin production. Maximum indirubin concentration was found to be at 80 mg/bioreactor. Initial cell concentration significantly affected indirubin production. The indirubin production at 29.2% PCV was improved by 845%, compared to that at 5% PCV. For high-density bioreactor culture of P. tinctorium, a maximum production rate of 10.2 mg indirubin/L day was obtained. Indirubin recovery for bioreactor operation was also examined using XAD-2, XAD-4, XAD-7, and solid silicon. XAD-4 was 1.6-fold more effective than that for solid silicon in indirubin recovery.

  • PDF

활성슬러지 반응탱크의 풍량제어지표인 NADH에 관한 연구 (Study on NADH which is the Air Volume Sensor in the Activated Sludge Reaction Tank)

  • 정우진;홍성민;김한래;장순웅
    • 한국환경과학회지
    • /
    • 제25권3호
    • /
    • pp.439-446
    • /
    • 2016
  • Domestic sewerage treatment plant is operated by activated sludge method and its modified method by using microorganism. In most cases, a method of using microorganism is directly controlled by the operator based on individual judgment through factors of DO, pH and ORP. In addition, under aerobic condition in bioreactor, energy consumption including excessive air injection is learned to be somewhat plenty. In order to solve this problem, in most of the process, improvement of internal recycling and activated environmental factor of microorganism were researched extensively. However, as factors are changed depending on various conditions, it is not sufficient as an indicator of judgment. As such, a research on operation of bioreactor that measures metabolic change in short time by directly measuring activated condition of microorganism using NADH fluorometer is required in reality.It is considered that the method like this could supplement problem of energy consumption being occurred in the existing treatment method and operational optimization of bioreactor would be enabled by controlling optimal air volume. Therefore, in this study, in order to obtain optimal operational indicator of bioreactor, proper air volume control test was performed and through batch test and site evaluation, possibility of NADH sensor being utilized as operational control indicator of bioreactor is intended to be analyzed. In order to compare with measured value, DO, ORP that are operational control indicator of existing bioreactor were used. As MLSS concentration was increased through batch test, NADH value was increased and site evaluation also showed similar tendency to batch test. Resultantly, it could be confirmed that changing level of NADH fluorometer was a sensor that could measure bioreactor condition effectively and optimized scale of bioreactor is considered to be utilized.

Optimization of Culture Conditions and Bench-Scale Production of $_L$-Asparaginase by Submerged Fermentation of Aspergillus terreus MTCC 1782

  • Gurunathan, Baskar;Sahadevan, Renganathan
    • Journal of Microbiology and Biotechnology
    • /
    • 제22권7호
    • /
    • pp.923-929
    • /
    • 2012
  • Optimization of culture conditions for L-asparaginase production by submerged fermentation of Aspergillus terreus MTCC 1782 was studied using a 3-level central composite design of response surface methodology and artificial neural network linked genetic algorithm. The artificial neural network linked genetic algorithm was found to be more efficient than response surface methodology. The experimental $_L$-asparaginase activity of 43.29 IU/ml was obtained at the optimum culture conditions of temperature $35^{\circ}C$, initial pH 6.3, inoculum size 1% (v/v), agitation rate 140 rpm, and incubation time 58.5 h of the artificial neural network linked genetic algorithm, which was close to the predicted activity of 44.38 IU/ml. Characteristics of $_L$-asparaginase production by A. terreus MTCC 1782 were studied in a 3 L bench-scale bioreactor.