• Title/Summary/Keyword: biphase calcium phosphate

Search Result 2, Processing Time 0.018 seconds

Biocompatibility of oxidized alginate/gelatin/BCP -based hydrogel composites

  • Phuong, Nguyen Thi;Min, Young-Ki;Yang, Hun-Mo;Song, Ho-Yeon;Lee, Byong-Teak
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2010.05a
    • /
    • pp.40.2-40.2
    • /
    • 2010
  • In this study, oxidized alginate/gelatin/biphase calcium phosphate (BCP)- based hydrogel composites were fabricated. Alginate sodium was oxidized by periodate. The oxidized product was confirmed by using $^1H$ and $^{13}C$ NMR spectra. The number average molecular weight ($M_n$), the average molecular weight ($M_w$) of the oxidized alginate were determined by Gel Permeation Chromatography (GPC). The hydrogel was formed from the oxidized alginate and gelatin solution via Schift-base reaction. The hydrogel showed a highly porosity by a Scanning Electron Microscope (SEM) and Mercury Intrusion Porosimetry (MIP). Crosslinked density of the gel matrix were assessd by trinitrobenzene sulfonic acid (TNBS) assay that shows a high effect on swelling ratio. Increment of the crosslinked desity resulted in enhancing compressive strength of the hydrogel composite. The cytotoxity of hydrogel was assessed with osteoblast MG-63. The hydrogel composites show a high compatibility. The obtained results showed a potential application for bone regeneration in future.

  • PDF

Fabrication and Characterization of BCP Nano Particle Loaded PCL Fiber and Their Biocompatibility

  • Nguyen, Thi-Phuong;Lee, Byong-Taek
    • Korean Journal of Materials Research
    • /
    • v.20 no.7
    • /
    • pp.392-400
    • /
    • 2010
  • The electrospinning process was established as a promising method to fabricate nano and micro-textured scaffolds for tissue engineering applications. A BCP-loaded PCL micro-textured scaffold thus can be a viable option. The biocompatibility as well as the mechanical properties of such scaffold materials should be optimized for this purpose. In this study, a composite scaffold of poly ($\varepsilon$-caprolactone) (PCL)-biphase calcium phosphate (BCP) was successfully fabricated by electrospinning. EDS and XRD data show successful loading of BCP nano particles in the PCL fibers. Morphological characterization of fibers shows that with a higher loaded BCP content the fiber surface was rougher and the diameter was approximately 1 to 7 ${\mu}m$. Tensile modulus and ultimate tensile stress reached their highest values in the PCL- 10 wt% BCP composite. When content of nano ceramic particles was low, they were dispersed in the fibers as reinforcements for the polymer matrix. However, at a high content of ceramic particles, the particles tend to agglomerate and lead to decreasing tensile modulus and ultimate stress of the PCL-BCP composite mats. Therefore, the use of nano BCP content for distribution in fiber polymer using BCP for reinforcement is limited. Tensile strain decreased with increasing content of BCP loading. From in vitro study using MG-63 osteoblast cells and L-929 fibroblast like cells, it was confirmed that electrospun PCL-BCP composite mats were biocompatible and that spreading behavior was good. As BCP content increased, the area of cell spreading on the surface of the mats also increased. Cells showed the best adherence on the surface of composite mats at 50 wt% BCP for both L-929 fibroblast-like cells and MG-63 osteoblast cell. PCL- BCP composites are a promising material for application in bone scaffolds.