• Title/Summary/Keyword: bipolar materials

Search Result 233, Processing Time 0.032 seconds

Properties and coating technology of metallic bipolar plate for polymer electrolyte fuel cells (고분자전해질 연료전지용 금속분리판의 특성 및 코팅 기술)

  • Moon, Sungmo;Lee, Suyeon;Kwon, Duyoung
    • Journal of the Korean institute of surface engineering
    • /
    • v.55 no.3
    • /
    • pp.133-142
    • /
    • 2022
  • This paper reviews bipolar plate materials and coatings for polymer electrolyte fuel cell. First, six roles and 10 requirements of the bipolar plate are described in detail. Secondly, type of materials for the bipolar plate and their advantages and disadvantages are mentioned. Thirdly, different metallic materials are introduced in terms of electrical and thermal conductivities, corrosion resistance, weight, strength and cost. Finally, various types of coating materials and methods were briefly reviewed.

Effects of Nitrogen Ion Implantation on the Surface Properties of 316L Stainless Steel as Bipolar Plate for PEMFC (고분자전해질 연료전지 분리판용 316L 스테인리스강의 표면특성에 미치는 질소 이온주입 효과)

  • Kim, Min Uk;Kim, Do-Hyang;Han, Seung Hee;Kim, Yu-Chan
    • Korean Journal of Metals and Materials
    • /
    • v.47 no.11
    • /
    • pp.722-727
    • /
    • 2009
  • The bipolar plates are not only the major part of the polymer electrolyte membrane fuel cell (PEMFC) stack in weight and volume, but also a significant contributor to the stack costs. Stainless steels are considered to be good candidates for bipolar plate materials of the PEMFC due to their low cost, high strength and easy machining, as well as corrosion resistance. In this paper, 316L stainless steel with and without nitrogen ion implantation were tested in simulated PEMFC environments for application as bipolar plates. The results showed that the nitride formed by nitrogen ion implantation contributed the decrease of the interfacial contact resistance without degradation of corrosion property. The combination of excellent properties indicated that nitrogen ion implanted stainless steel could be potential candidate materials as bipolar plates in PEMFC. Current efforts have focused on optimizing the condition of ion implantation.

Development of Metaal Bipolar plates for Fuel Cell Vehicles (연료전지 차량용 금속분리판 개발)

  • Jin, Sang-Mun;Yang, Yoo-Chang;Kim, Sae-Hoon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.331-334
    • /
    • 2009
  • Currently, the bipolar plates are fabricated mainly from graphite materials. However, metal bipolar plate are getting most attractive due to their good feasibility of mass production and low cost. In this study, metal bipolar plates for fuel cell Vehicles were developed with a concept based on the straight flow patterns to minimize the pressure drop and spring back. And molded gasket apply to the bipolar plate for improve sealing performance. Results show that the metal bipolar plate have a high potential to replace for graphite materials in fuel cell application.

  • PDF

A Low-Density Graphite-Polymer Composite as a Bipolar Plate for Proton Exchange Membrane Fuel Cells

  • Dhakate, S.R.;Sharma, S.;Mathur, R.B.
    • Carbon letters
    • /
    • v.14 no.1
    • /
    • pp.40-44
    • /
    • 2013
  • The bipolar plate is the most important and most costly component of proton exchange membrane fuel cells. The development of a suitable low density bipolar plate is scientifically and technically challenging due to the need to maintain high electrical conductivity and mechanical properties. Here, bipolar plates were developed from different particle sizes of natural and expanded graphite with phenolic resin as a polymeric matrix. It was observed that the particle size of the reinforcement significantly influences the mechanical and electrical properties of a composite bipolar plate. The composite bipolar plate based on expanded graphite gives the desired mechanical and electrical properties as per the US Department of Energy target, with a bulk density of 1.55 $g.cm^{-3}$ as compared to that of ~1.87 $g.cm^{-3}$ for a composite plate based on natural graphite (NG). Although the bulk density of the expanded-graphite-based composite plate is ~20% less than that of the NG-based plate, the I-V performance of the expanded graphite plate is superior to that of the NG plate as a consequence of the higher conductivity. The expanded graphite plate can thus be used as an electromagnetic interference shielding material.

Corrosion characteristics and interfacial contact resistances of TiN and CrN coatings deposited by PVD on 316L stainless steel for polymer electrolyte membrane fuel cell bipolar plates

  • Lee, Jae-Bong;Oh, In Hwan
    • Corrosion Science and Technology
    • /
    • v.12 no.4
    • /
    • pp.171-178
    • /
    • 2013
  • In a polymer membrane fuel cell stack, the bipolar plate is a key element because it accounts for over 50% of total costs of the stack. In order to lower the cost of bipolar plates, 316L stainless steels coated with nitrides such as TiN and CrN by physical vapor deposition were investigated as alternative materials for the replacement of traditional brittle graphite bipolar-plates. For this purpose, interfacial contact resistances were measured and electrochemical corrosion tests were conducted. The results showed that although both TiN and CrN coatings decreased the interfacial contact resistances to less than $10m{\Omega}{\cdot}cm^2$, they did not significantly improve the corrosion resistance in simulated polymer electrolyte membrane fuel cell environments. A CrN coating on 316L stainless steel showed better corrosion resistance than a TiN coating did, indicating the possibility of using modified CrN coated metallic bipolar plates to replace graphite bipolar plates.

Effect of Pretreatments on Graphene Coated Bipolar Plate of PEMFC on Electrochemical (전처리가 그래핀을 코팅한 고체고분자 연료전지 분리판의 전기화학적 특성에 미치는 영향)

  • Cha, Seong-Yun;Lee, Jae-Bong
    • Corrosion Science and Technology
    • /
    • v.13 no.6
    • /
    • pp.224-232
    • /
    • 2014
  • Effect of pretreatments on the graphene coated bipolar plate of proton exchange membrane fuel cell(PEMFC) was investigated in simulated environments for PEMFC by using electrochemical measurement techniques. Interfacial contact resistance(ICR) between the graphene coated bipolar plate and the gas diffusion layer(GDL) was measured. The value of ICR decreased with an increase in compaction stress($20N/cm^2{\sim}220N/cm^2$). ICR of graphene coated bipolar plate was higher than that of bare 316L stainless steel. However, Potentiodynamic measurement results showed that the corrosion resistance of graphene coated bipolar plate was higher than that of bare 316L stainless steel. $H_2SO_4$ acid pretreatment was the most effective among various pretreatments. The lowest ICR and the corrosion current density were obtained when using $H_2SO_4$ solution pretreatment.

Characteristics of Fluorine-Doped Tin Oxide Film Coated on SUS 316 Bipolar Plates for PEMFCs (ECR-MOCVD를 이용하여 연료 전지 분리판에 코팅된 FTO막의 특성 연구)

  • Park, Ji-Hun;Hudaya, C.;Jeon, Bup-Ju;Byun, Dong-Jin;Lee, Joong-Kee
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.22 no.3
    • /
    • pp.283-291
    • /
    • 2011
  • Polymer electrolyte membrane fuel cells (PEMFCs) use the bipolar plate of various materials between electrolyte and contact electrode for the stable hydrogen ion exchange activation. The bipolar plate of various materials has representatively graphite and stainless steel. Specially, stainless steels have advantage for low cost and high product rate. In this study, SUS 316 was effectively coated with 600 nm thick F-doped tin oxide (SnOx:F) by electron cyclotron resonance-metal organic chemical vapor deposition and investigated in simulated fuel cell bipolar plates. The results showed that an F-doped tin oxide (SnOx:F) coating enhanced the corrosion resistance of the alloys in fuel cell bipolar plates, though the substrate steel has a significant influence on the behavior of the coating. Coating SUS 316 for fuel cell bipolar plates steel further improved the already excellent corrosion resistance of this material. After coating, the increased ICR values of the coated steels compared to those of the fresh steels. The SnOx:F coating seems to add an additional resistance to the native air-formed film on these stainless steels.

The Characterization of the Resin Bonded Graphite Composite Bipolar Plate using Isotropic Graphite Powder for PEM Fuel Cell

  • Cho, Kwang-Youn;Riu, Doh-Hyung;Hui, Seung-Hun;Kim, Hong-Suk;Chung, Yoon-Jung;Lim, Yun-Soo
    • Carbon letters
    • /
    • v.8 no.4
    • /
    • pp.326-334
    • /
    • 2007
  • In this study, graphite composites were fabricated by warm press molding method to realize commercialization of PEM fuel cells. Graphite composites have been considered as alternative economic materials for bipolar plate of PEM fuel cells. Graphite powder that enables to provide electrical conductivity was selected as the main substance. The graphite powder was mixed with phenolic resin and the mixture was pressed using a warm press method. First of all, the graphite powder was pulverized with a ball mill for the dense packing of composite. As the ball milling time increases, the average size of particles decreases and the size distribution becomes narrow. This allows for improvement of the uniformity of graphite composite. However, the surface electrical resistivity of graphite composite increases as the ball milling time increases. It is due to that graphite particles with amorphous phase are generated on the surface due to the friction and collision of particles during pulverizing. We found that the contact electrical resistivity of graphite particles increases as the particle size decreases. The contact electrical resistivity of graphite powders was reduced due to high molding pressure by warm press molding. This leads to improvement of the mechanical properties of graphite composite. Hydrogen gas impermeability was measured with the graphite composite, showing a possibility of the application for bipolar plate in fuel cell. And, I-V curves of the graphite composite bipolar plate exhibit a similar performance to the graphite bipolar plate.

Crystal Structure, Microstructure and Mechanical Properties of NbN Coatings Deposited by Asymmetric Bipolar Pulsed DC Sputtering

  • Chun, Sung-Yong;Im, Hyun-Ho
    • Journal of the Korean Ceramic Society
    • /
    • v.54 no.1
    • /
    • pp.33-37
    • /
    • 2017
  • Single phase niobium nitride (NbN) coatings were deposited using asymmetric bipolar pulsed dc sputtering by varying pulse frequency and duty cycle of pulsed plasmas. Crystal structure, microstructure, morphology and mechanical properties were examined using XRD, FE-SEM, AFM and nanoindentation. Upon increasing pulse frequencies and decreasing duty cycles, the coating morphology was changed from a pyramidal-shaped columnar structure to a round-shaped dense structure with finer grains. Asymmetric bipolar pulsed dc sputtered NbN coatings deposited at pulse frequency of 25 kHz is characterized by higher hardness up to 17.4 GPa, elastic modulus up to 193.9 GPa, residual compressive stress and a smaller grain size down to 27.5 nm compared with dc sputtered NbN coatings at pulse frequency of 0 kHz. The results suggest that the asymmetric bipolar pulsed dc sputtering technique is very beneficial to reactive deposition of transition-metal nitrides such as NbN coatings.