• Title/Summary/Keyword: bivariate ranked set sampling

Search Result 3, Processing Time 0.018 seconds

Other approaches to bivariate ranked set sampling

  • Al-Saleh, Mohammad Fraiwan;Alshboul, Hadeel Mohammad
    • Communications for Statistical Applications and Methods
    • /
    • v.25 no.3
    • /
    • pp.283-296
    • /
    • 2018
  • Ranked set sampling, as introduced by McIntyre (Australian Journal of Agriculture Research, 3, 385-390, 1952), dealt with the estimation of the mean of one population. To deal with two or more variables, different forms of bivariate and multivariate ranked set sampling were suggested. For a technique to be useful, it should be easy to implement in practice. Bivariate ranked set sampling, as introduced by Al-Saleh and Zheng (Australian & New Zealand Journal of Statistics, 44, 221-232, 2002), is not easy to implement in practice, because it requires the judgment ranking of each of the combination of the order statistics of the two characteristics. This paper investigates two modifications that make the method easier to use. The first modification is based on ranking one variable and noting the rank of the other variable for one cycle, and do the reverse for another cycle. The second approach is based on ranking of one variable and giving the second variable the same rank (Concomitant Order Statistic) for one cycle and do the reverse for the other cycle. The two procedures are investigated for an estimation of the means of some well-known distributions. It is show that the suggested approaches can be used in practice and can be more efficient than using SRS. A real data set is used to illustrate the procedure.

ESTIMATING THE CORRELATION COEFFICIENT IN A BIVARIATE NORMAL DISTRIBUTION USING MOVING EXTREME RANKED SET SAMPLING WITH A CONCOMITANT VARIABLE

  • AL-SALEH MOHAMMAD FRAIWAN;AL-ANANBEH AHMAD MOHAMMAD
    • Journal of the Korean Statistical Society
    • /
    • v.34 no.2
    • /
    • pp.125-140
    • /
    • 2005
  • In this paper, we consider the estimation of the correlation coefficient in the bivariate normal distribution, based on a sample obtained using a modification of the moving extreme ranked set sampling technique (MERSS) that was introduced by Al-Saleh and Al-Hadhrami (2003a). The modification involves using a concomitant random variable. Nonparametric-type methods as well as the maximum likelihood estimation are considered under different settings. The obtained estimators are compared to their counterparts that are obtained based simple random sampling (SRS). It appears that the suggested estimators are more efficient

Estimation of P(X > Y) when X and Y are dependent random variables using different bivariate sampling schemes

  • Samawi, Hani M.;Helu, Amal;Rochani, Haresh D.;Yin, Jingjing;Linder, Daniel
    • Communications for Statistical Applications and Methods
    • /
    • v.23 no.5
    • /
    • pp.385-397
    • /
    • 2016
  • The stress-strength models have been intensively investigated in the literature in regards of estimating the reliability ${\theta}$ = P(X > Y) using parametric and nonparametric approaches under different sampling schemes when X and Y are independent random variables. In this paper, we consider the problem of estimating ${\theta}$ when (X, Y) are dependent random variables with a bivariate underlying distribution. The empirical and kernel estimates of ${\theta}$ = P(X > Y), based on bivariate ranked set sampling (BVRSS) are considered, when (X, Y) are paired dependent continuous random variables. The estimators obtained are compared to their counterpart, bivariate simple random sampling (BVSRS), via the bias and mean square error (MSE). We demonstrate that the suggested estimators based on BVRSS are more efficient than those based on BVSRS. A simulation study is conducted to gain insight into the performance of the proposed estimators. A real data example is provided to illustrate the process.