• Title/Summary/Keyword: blast furnace slag

Search Result 1,272, Processing Time 0.032 seconds

A Study on the Physical Properties of Recycled Fine Aggregate (by Dry and Wet Type Production formula) Mortar Using Blast Furnace Slag (고로슬래그를 사용한 건식 및 습식 재생 잔골재 모르타르의 물리적 특성에 관한 연구)

  • Shim, Jong-Woo;Lee, Sea-Hyun;Seo, Chi-Ho
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.11a
    • /
    • pp.501-504
    • /
    • 2006
  • Recycled aggregate mortar contains plenty of calcium hydroxide to improve the strength of blast furnace slag, although the surface mortar made of recycled aggregate deteriorates adhesion to cement paste and blast furnace slag has a low initial strength. Therefore, this study assumes that the combination with both recycled aggregate and blast furnace slag will produce a better performance. The results of the experiment show that dry mortar made of recycled aggregate provides with higher strength than wet mortar does at the 3-day and 7-day age, while lower at the 28-day age. It indicates that a large amount of cement mortar made of dry recycled aggregate has deteriorated adhesion strength. The mixes with 30% and 50% of blast furnace slag and 50% and 75% of recycled aggregate provide with much better strength at the 7-day age, although they usually have latent hydraulic property at the 28-day age. It indicates that calcium hydroxide($Ca(OH){_2}$) in recycled aggregate has affected ground granulated blast furnace slag.

  • PDF

Rheology Properties of Ultrafine Blast Furnace Slag Replacement Cement Paste on Gypsum Volume Fraction (석고 혼입율에 따른 초미분 고로슬래그 치환 시멘트 페이스트의 유동특성)

  • Lee, Gun-Young;Lee, Gun-Cheol;Choi, Jung-Gu;Kim, Woo-Jae
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2014.11a
    • /
    • pp.178-179
    • /
    • 2014
  • The fine blast furnace slag is widely used as the admixture as it helps to increase the fluidity, long term strength of the concrete but decrease the heat of hydration. In case of the fine blast furnace slag, if the fineness of the slag is enhanced with the addition of gypsum to the concrete for the supplement of low strength in early stage and the facilitation of the initial hydration, the quality of the concrete is expected to change depending on the volume of the gypsum volume fraction. But, up to now the study on the fine blast furnace slag has only focused on the effect of fineness, replacement and admixture and there have been almost no studies on the effect of the gypsum volume fraction. Accordingly, this study focuses on what effect the gypsum volume fraction would make on the fluidity characteristics of the ultrafine furnace slag cement paste by using the rheology properties.

  • PDF

Chemical Attack and Carbonation Properties of Latex-Modified Concrete Using Blast-furnace Slag (고로(高爐)슬래그 미분말(微粉末)을 사용(使用)한 라텍스개질(改質) 콘크리트의 화학적(化學的) 침식(侵蝕) 및 탄산화 특성(特性))

  • Hong, Chang-Woo;Jeong, Won-Kyong;Sim, Do-Sik
    • Resources Recycling
    • /
    • v.17 no.5
    • /
    • pp.11-18
    • /
    • 2008
  • The purpose of this study was to evaluate the effects of blast-furnace slag on chemical attack and carbonation of latex-modified concrete (LMC) and ordinary portland cement concrete as slag contents. Main experimental variables were performed latex contents (0%, 15%) and slag contents (0%, 30%, 50%). The compressive strengths, chemical attacks resistance and carbonation depth were measured to analyze the characteristic of the developed LMC and BS-LMC(latex-modified concrete added blast-furnace slag) on hardened concrete. The test results showed that compressive strength of BS-LMC with blast-furnace slag content 30% was quite similar to it of OPC without slag content. The structural quality deterioration was concerned when blast slag content was up to 50%. However, carbonation restraint of BS-LMC with blast-furnace slag 30% was bigger then that of opc. Also, the effects of added latex on OPC and BS-LMC were increased on the carbonation restraint and chemical attacks resistance.

A Study on the Strength Property of Recycled Fine Aggregate (Wet Type) Mortar with Blast Furnace Slag (고로슬래그를 사용한 습식 순환 잔골재 모르타르의 강도 특성에 관한 연구)

  • Shim, Jong-Woo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.14 no.5
    • /
    • pp.153-160
    • /
    • 2010
  • This study aims to obtain technical data for improvement of utilization of Blast Furnace Slag(BFS), recycled aggregate in the future by complementing fundamental problems of BFS such as manifestation of initial strength and excessive alkali quantity as well as weakness of recycled fine aggregate through manufacturing of recycled fine aggregate mortar using BFS. The recycled aggregate includes the cement paste hardened as the surface and the type of the aggregate, which contains plenty of calcium hydroxide($Ca(OH)_2$) as well as the unhydrated cement. Accordingly, the objectives of this study are to inspect the manufacturing the recycled fine aggregate mortar used with blast furnace slag, to consider the effects of the recycled aggregate on the strength development of ground granulated blast furnace slag, and then to acquire the technical data to take into consideration the further usages of the recycled aggregate and blast furnace slag. In eluted ions from recycled aggregate, it showed that there were natrium($Na^+$) and kalium($K^+$), expected to be flown out of unhydrated cement, as well as calcium hydroxide($Ca(OH)_2$). Application of this water to mix cement mortar with ground granulated blast furnace slag was observed to expedite hydration as calcium hydroxide($Ca(OH)_2$) and unhydrated cement component were expressed to give stimuli effects on ground granulated blast furnace slag. The results of the experiment show that the recycled aggregate mixed with blast furnace slag has comparatively higher hydration activity in 7 day than the mortar not mixed with one in 3 day mortar does, causing the calcium hydroxide in the recycled fine aggregate to work on as a stimulus to the hydration of ground granulated blast furnace slag.

A Study on the Hydration Property of Mortar with Balst Furnace Slag using Water Eluted from Recycled Coarse Aggregates (순환골재 용출수를 활용한 고로슬래그 미분말 혼입 모르터의 강도특성)

  • Shin, Sang-Yeop;Jeong, Euy-Chang;Kim, Young-Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2012.11a
    • /
    • pp.81-82
    • /
    • 2012
  • The purpose of this study is the hydration properties of motar using Blast-Furnace Slag(BFS) with water elured from recycled coarse aggregate. The results of the experiment show that the water eluted from recycled coarse aggregate mixed with blast furnace slag has comparatively higher hydration activity than the mortar not mixed with one in early-age mortar causing the calcium hydroxide in the recycled coarse aggregate to work on as a stimulus to the hydration of ground granulated blast furnace slag. BFS mixed with the eluting water the hydration reaction was a promotion.

  • PDF

The Study On The Early Age Strength of Blast Furnace Slag Cement Adding a Large Amount of Fly Ash (플아이애쉬를 다량으로 혼입한 고로슬래그 시멘트의 초기강도에 관한연구)

  • Piao, Ying Mo;Huang, Yin Tae;So, Seung Young;Soh, Yang Seob
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.04a
    • /
    • pp.231-236
    • /
    • 2000
  • In this study, to present the use of the blase furnace slag fly ash derived from a large amount of the industrial products with the early strength reduction of it prevented, the initial strength is measured after a large quantity of fly ash and the required stimulus agent for the high development of the initial strength was added in blast furnace slag cement. As the results, in spite of the much addition of fly ash in blast furnace slag, the long-age strength of blast furnace slag cement was able to be improved by a proper amount of stimulus agent, and was as high as that of ordinary portland cement.

  • PDF

An Experimental Study on the Engineering Properties of Concrete According to the Replacement Ratio of Blast-Furnace Slag (고로슬래그 미분말 대체율에 따른 콘크리트의 공학적 특성에 관한 실험적 연구)

  • Song, Min-Seob;Jang, Jea-Bong;Kim, Gab-Su;Yoon, Jong-Kee;Kim, Jae-Hwan;Kim, Moo-Han
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2003.11a
    • /
    • pp.5-8
    • /
    • 2003
  • As a part of efforts to obtain high quality and economical efficiency of concrete, blast-furnace slag has been utilized by means of cement replacement. Therefore superior performance can be ensured, environmental pollution can be prevented and economical advantage can be obtained with utilization by cement replacement. But the studies on the blast-furnace slag are not systematic and reasonable. So, it was planed that basic data in regard to technique of manufacturing and economic improvement of concrete is showed with experimental comparison and investigation of engineering properties of concrete utilizing blast-furnace, industry by-product, as cement replacement in this study.

  • PDF

An Experimental Study on the Engineering Properties of Concrete According to the Replacement Ratio of Blast-Furnace Slag (고로슬래그 미분말 대체율에 따른 콘크리트의 공학적 특성에 관한 실험적 연구)

  • 송민섭;장재봉;김갑수;윤종기;김재환;김무한
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2003.05a
    • /
    • pp.5-8
    • /
    • 2003
  • As a part of efforts to obtain high quality and economical of efficiency of concrete, blast-furnace slag has been utilized by means of cement replacement. Therefore superior performance can be ensured, environmental pollution can be prevented and economical advantage can be obtained with utilization by cement replacement. But the studies on the blast-furnace slag are not systematic and reasonable. So, it was planed that basic data in regard to technique of manufacturing and economic improvement of concrete is showed with experimental comparison and investigation of engineering properties of concrete utilizing blast-furnace, industry by-product, as cement replacement in this study.

  • PDF

Effect of Adding Gypsum in Blast-Furnace-Based Mortar's Fundamental Properties (이수석고가 고로슬래그 미분말 활용 무시멘트 모르타르의 기초물성에 미치는 영향)

  • Lu, Liang Liang;Kim, Jun Ho;Park, Jun Hee;Huang, Jin Guang;Baek, Byung Hoon;Han, Cheon Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2013.11a
    • /
    • pp.137-138
    • /
    • 2013
  • Nowadays, research about using recycled aggregate as alkali activator has been investigated. By the mechanism of Alkali activation, blast furnace slag's potential hydraulis property would be activated. Thee application of this technique is considered as fit for low strength concrete, so it's suitable in concrete secondary production such as bricks and blocks. Aside alkali activator, sulfate could also activate blast furnace slag's potential hydranlis property. In this research, gypsum(CaSO4·2H2O)has been added with blast furnace slag. Fundamental experiment such as flow and strength has been tested to evalnate effect of gypsum's activation property.

  • PDF

Study of Fundamental Properties of Latex-Modified Concrete Using Blast-furnace Slag (고로(高爐)슬래그 미분말(微粉末)을 사용(使用)한 라텍스개질(改質) 콘크리트의 기초물성(基礎物性) 연구(硏究))

  • Hong, Chang-Woo;Jeong, Won-Kyong;Kim, Kyeong-Jin
    • Resources Recycling
    • /
    • v.15 no.2 s.70
    • /
    • pp.10-17
    • /
    • 2006
  • The purpose of this study was to evaluate the effects of blast-furnace slag on strength development and durability of latex-modified concrete (LMC) and ordinary portland cement concrete as slag contents. Main experimental variables were performed latex contents (0%, 10%, 15%) and slag contents (0%, 30%). The compressive and flexural strengths, chloride-ion rapid permeability and chemical attacks resistance were measured to analyze the characteristic of the developed LMC and BS-LMC(latex-modified concrete added blast-furnace slag) on hardened concrete. The test results showed that compressive and flexural strength of BS-LMC increased as the slag contents increased from 0% to 30% at the long term of curing. It considers blast furnace slag used when latex content was up to 10%. The permeability resistance of BS-LMC(latex 10%, blast 30%) was extremely good at the curing time 90 days. Also. the effects of added blast furnace slag on OPC and LMC were increased on the permeability and chemical attacks resistance.