• 제목/요약/키워드: blend

검색결과 1,431건 처리시간 0.03초

PPS/ABS 블렌드의 형태학적/열적 특성 (Morphology and Thermal Properties of PPS/ABS Blends)

  • 이영관;김준명;남재도;박찬석;장승필
    • 폴리머
    • /
    • 제24권3호
    • /
    • pp.366-373
    • /
    • 2000
  • 본 연구에서는 poly(phenylene sulfide)(PPS)와 ABS의 물성을 상호보완하기 위하여 블렌드를 제조하였다. 각 성분간의 상용성을 증진시키기 위하여 소량의 무수말레인산을 ABS에 반응시켜 MABS (ABS-g-MAH)를 제조하였으며, PPS/ABS 및 PPS/MABS 블렌드는 이축 혼련 압출기를 이용하여 용융 흔합하였다. 블렌드에서 ABS의 화학적 개질이 블렌드의 모폴로지와 열적 성질에 미치는 영향을 관찰하였다. PPS/MABS 블렌드의 경우, 각 성분간에 강한 인력이 형성되는 것을 광학현미경과 SEM을 이용하여 확인하였으며, DMA 분석에서는 단일 유리전이 온도를 확인하였다. 또한 화학적으로 개질된 MABS를 사용한 PPS/MABS의 블렌드는 PPS/ABS보다 향상된 열적 성질을 나타내었다.

  • PDF

Mechanical Properties and Thermal Stability of Waste PVC/HDPE Blend Prepared by Twin-screw Extruder

  • Lee, Rami;Park, Se-Ho;Baek, Jong-sung;Kye, Hyoungsan;Jhee, Kwang-Hwan;Bang, Daesuk
    • Elastomers and Composites
    • /
    • 제54권1호
    • /
    • pp.7-13
    • /
    • 2019
  • Recycling of waste polyvinyl chloride plastics has attracted much attention due to environmental problems, but the poor mechanical properties, low thermal stability, frequent breakage of strands, and melt cracking of the waste plastics have limited their widespread use. To overcome these disadvantages of waste PVC (W-PVC), recycled PVC powder blend was prepared by adding high-density polyethylene (HDPE) and ethylene vinyl acetate (EVA) as a heat stabilizer and compatibilizer, respectively. An intermeshing co-rotating twin screw extruder was used to prepare the blend, and the characteristics of the blend were analyzed by SEM and TGA, and by using a UTM and Izod impact tester. The impact strength was improved as the EVA content increased for the W-PVC/HDPE (80/20 wt%) blend. As the HDPE and EVA contents increased in the W-PVC/HDPE/EVA blend, the impact strength increased. SEM observations also revealed the improved interfacial adhesion for the EVA-containing blend.

Poly(Styrene-co-GMA)의 합성과 in situ Reactive Compatabilizer 로서의 응용 (Synthesis of Poly(Styrene-co-GMA) and its Application as in situ Reactive Compatabilizer)

  • 김주영;서경도
    • 공업화학
    • /
    • 제3권3호
    • /
    • pp.499-506
    • /
    • 1992
  • 모노머의 반응성비가 각각 $r_1=0.53$, $r_2=0.44$반응인 styrene과 GMA(glycidyl methacrylate)를 일정 몰비로 반응시켜서 styrene과 GMA의 공중합체인 PGS를 합성한 후, 에틸렌 디아민을 반응시켜서 공중합체내에 아민기를 도입시켰다. 아민기가 도입된 중합체인 NPGS는 PGMA와 블렌드시에 DSC분석 결과, 단일 Tg를 나타내므로 두 폴리머는 상용 성이 있다는 것이 관찰되었다. 이 NPGS-PGMA의 블렌드를 PS-PGMA블렌드물에 일정무게비로 첨가하여서 이에 따른 상용성의 변화를 관찰하였다. 즉, 비상용성인 PS-PGMA블렌드에, 에폭시기와 아민기와의 화학적 반응에 의하여 상용성을 나타내는 NPGS-PGMA블렌드의 첨가에 따른 상용성의 향상을 DSC분석을 통한 Tg변화와 SEM (Scanning electron microscopy)측정에 의한 morphology변화를 통하여서 관찰하였다. 측정 결과, PS-PGMA 블렌드는 NPGS-PGMA 블렌드가 첨가됨에 따라 Tg변화를 나타내었고, PGMA의 PS내에서의 분산은 향상되었다. 따라서, NPGS-PGMA의 블렌드는 PS-PGMA블렌드의 상용성을 향상시키는 상용화제로서의 작용을 하였다.

  • PDF

Wear Particulate Matters and Physical Properties of Silica filled ENR/BR Tread Compounds according to the BR Contents

  • Ryu, Gyeongchan;Kim, Donghyuk;Song, Sanghoon;Lee, Hyun Hee;Ha, Jin Uk;Kim, Wonho
    • Elastomers and Composites
    • /
    • 제56권4호
    • /
    • pp.243-249
    • /
    • 2021
  • The demand for truck bus radial (TBR) tires with enhanced fuel efficiency and wear resistance have grown in recent years. In addition, as the issue of particulate matter and air pollution increases, efforts are being made to reduce the generation of particulate matter. In this study, we investigated the effect of varying the content of butadiene rubber (BR) on the properties of the rubber compounds and the amount of particulate matter in the TBR tire tread compound. Furthermore, we utilized carbon black in the NR/BR blend compounds owing to its excellent compatibility, and we used silica in the ENR-25/BR blend compounds because it can interact chemically with epoxide groups. The NR/BR blend compounds and the ENR-25/BR blend compounds were evaluated by varying their BR content between 20 phr and 30 phr. The results showed that the ENR-25/BR blend compounds had superior wear resistance than the NR/BR blend compounds. This was caused by the interaction between silica and ENR. In addition, it was confirmed that the increased wear resistance as the BR content increased. Furthermore, compared to the NR/BR blend compounds, ENR-25/BR blend compounds exhibited a lower tan 𝛿 value at 60℃ because silica was used as filler. This indicates a higher fuel efficiency. The measurement results for wear particulate matter showed that as increasing the BR content resulted in generation of less wear particulate matter. This was caused by the increased wear resistance. Moreover, the ENR-25/BR blend compounds with excellent filler-rubber interaction exhibited lower quantities of generated wear particulate matters as compared to the NR/BR blend compounds.

Preparation and Characterization of the Asymmetric Microporous Poly(vinylidene fluoride) (PVDF) Blend Membranes with Hydrophilic Surfaces

  • Hwang, Jeong-Eun;JeGal, Jong-Geon
    • Korean Membrane Journal
    • /
    • 제9권1호
    • /
    • pp.1-11
    • /
    • 2007
  • To prepare chemically stable asymmetric microporous membranes with a hydrophilic surface, which would be expected to have better antifouling properties, poly(vinylidene fluoride) (PVDF) blend membranes were prepared by the phase inversion process. PVDF mixture solutions in N-methylpyrrolidone (NMP) blended with several polar potential ionic polymers such as polyacrylonitrile (PAN), poly(methylmethacrylate) (PMMA) and poly(N-isopropylacrylamide) (NIPAM) were used for the formation of the PVDF blend membranes. They were then characterized with several analytical methods such as FESEM, FTIR, contact angle measurement, pore size distribution and permeability measurement. Regardless of different polar polymers blended, they all showed a finger-like structure with more hydrophilic surface than the pristine PVDF membrane. For all the PVDF blend membrane, due to the polar potential ionic polymers used, the flux of those was improved. Especially the PVDF blend membrane with NIPAM showed the highest flux among the membranes prepared. Also antifouling property of the PVDF membrane was improved by the use of the polar polymers.

Stability of Bulk Heterojunction Organic Solar Cells with Different Blend Ratios of P3HT:PCBM

  • Kwon, Moo-Hyun
    • Transactions on Electrical and Electronic Materials
    • /
    • 제13권2호
    • /
    • pp.98-101
    • /
    • 2012
  • I studied the stability of organic photovoltaic cells in terms of P3HT:PCBM-71 blend ratio as a function of storage time. I obtained the best cell performance by optimizing the blend ratio of electron donor and electron acceptor within the active layer. In this study, I found that the more the P3HT:PCBM ratio increases within the active layer, the more the cell efficiency decreases as the storage time increases. As a result, the best optimized blend ratio was the 1:0.6 ratio of P3HT:PCBM-71, and cell efficiency of the device with the 1:0.6 blend ratio was 4.49%. The device with the best cell efficiency showed good stability.

White Light-Emitting Diodes Using Conjugated Polymer Blends

  • Hwang, Do-Hoon;Park, Moo-Jin;Kim, Suk-Kyung;Lee, Chang-Hee;Kim, Yong-Bae
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2004년도 Asia Display / IMID 04
    • /
    • pp.585-587
    • /
    • 2004
  • We report the characterization of white light emitting devices fabricated using conjugated polymer blends. Blue emissive poly[9,9-bis(4'-n-octyloxyphenyl) fluorene-2,7-diyl-co-10-(2'-ethylhexyl)phenothiazine-3,7-diyl] [poly(BOPF-co-PTZ)] and red emissive poly(2-(2'-ethylhexyloxy)-5-methoxy-1,4-phenylenevinylene) (MEH-PPV) were employed in the blends. The inefficient energy transfer between these blue and red light emitting polymers (previously deduced from the PL spectra of the blend films) enables the production of white light emission through control of the blend ratio. The PL and EL emission spectra of the blend systems were found to vary with the blend ratio. The EL devices were fabricated in the ITO/PEDOT/blend/LiF/Al configuration and white light emission was obtained for one of the tested blend ratios.

  • PDF

화상 분석에 의한 디젤기관의 연소과정에 관한 연구 -에탄올-경유 혼합 연료의 사용- (A Study on Combustion Process of Diesel Engine by Image Analysis -the use of ethanol-diesel oil blend fuel-)

  • 이형곤;방중철
    • 한국자동차공학회논문집
    • /
    • 제9권1호
    • /
    • pp.94-101
    • /
    • 2001
  • In this paper, the combustion improvement effects of alcohol-diesel oil blend fuel were investigated in a visualization engine. As a result of experiment, it was found out that the combustion chamber of deep dish type and re-entrant type at the same operation condition. However, when the con-tent of alcohol exceeded 10% of total fuel delivery, the combustion of alcohol-diesel oil blend fuel was worse than that of diesel oil. The maximum blend quantity of ethanol which is not ignited in the re-entrant type combustion chamber was estimated at approximately 40% of total fuel delivery. So, it is necessary to blend appropriate quantity of a volatility fuel such as alcohol in order to improve combustion.

  • PDF

곡면 모델링에서 3차원 경계 곡면 블렌드 구성에 관한 연구 (A Study on The Construction of 3-Dimensional Edge Blend Surface Modeling)

  • 이창억
    • 기술사
    • /
    • 제27권3호
    • /
    • pp.121-131
    • /
    • 1994
  • 3차원 자유 형상 곡면으로 이루어진 선형을 부분적으로 표현하기란 매우 힘들다. 선박 설계에 컴퓨터를 이용한 기술이 적용되기 시작하면서, 기하학적 모델링 기법이 개발되어 왔다. 선형 모델링에서,곡률 변화가 심한 선체 곡면의 국부적인 곡면 형상을 Blending 기법을 써서 표현하는 연구는 이루어지지 않았다. Blend곡면을 써서, 설계시에 도면상에 표시되는 작은 곡면을 부드럽게 표현하는 방법을, 선체표면과 돌출된 접합 부분을 Blending 하고져 하였다. 본 연구에서는, 두개의 Base곡면에 Blend반지름을 입력 했을 때, Blend곡면에 Blending방법을 이용하여 공간 좌표인 Offsets 데이터를 얻을 수 있도록 선박 설계에 적용하여 보았다.

  • PDF

PVC/Gypsum 복합체에서 Gypsum 의 영향 (Effect of gypsum content on the properties of PVC/Gypsum polymer blend material)

  • N. V. Gian;Thai Hoan;Kim, M. Y.
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2003년도 추계학술발표대회 논문집
    • /
    • pp.221-224
    • /
    • 2003
  • Polyvinyl chloride (PVC)/gypsum Polymer blend materials were prepared by melt blending of PVC with gypsum and additives. Effect of gypsum content on the properties of PVC/gypsum Polymer blend material was studied by investigating physico-mechanical properties, thermal properties and morphology development. It was found that the replacement of gypsum for methylene-butadiene-sarene (MBS) component in PVC/gypsum polymer blend material enhanced the tensile strength, but gradually decreased its impact strength. Besides, with the increase of gypsum content, the elongation at break of material gradually decreased. The Presence of the different gypsum contents made a shift of g1ass transition temperature and increased the thermal stability as well as the processing temperature range of polymer blends. The observation of morphology, the results of the physico-mechanical properties and thermal properties proved simultaneously that PVC/gypsum Polymer blend material with the gypsum content of 22.56 wt.% reached the optimum results among five kinds of PVC/gypsum Polymer blend materials investigated.

  • PDF