• Title/Summary/Keyword: blind via hole

Search Result 6, Processing Time 0.017 seconds

Blind via Hole manufacturing technology using UV Laser (UV 레이저에 의한 블라인드 비아홀 가공)

  • 장정원;김재구;신보성;장원석;황경현
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.160-163
    • /
    • 2002
  • Micro via hole Fabrication is studied by means of minimizing method to circuit size as many electric products developed to portable and minimize. Most of currently micro via hole fabrication using laser is that fabricate insulator layer using CO2 Laser after Cu layer by etching, or fabricate insulator layer using IR after trepanning Cu by UV. In this paper, it was performed that a metal layer and insulator layer were worked upon only one UV laser, and increase to processing speed by experiment.

  • PDF

Via Filling in Fine Pitched Blind Via Hole of Microelectronic Substrate (마이크로 전자기판의 미세 피치 블라인드 비아홀의 충진 거동)

  • Yi Min-Su;Lee Hyo-S.
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.13 no.1 s.38
    • /
    • pp.43-49
    • /
    • 2006
  • The properties, behavior and reliability of the residual void in blind via hole(BVH) were carried out for the shape of BVH using the void extraction process. The residual void was perfectly removed in the specimens applied by the void extraction process, which was improved by 40% rather than the conventional process. The residual void in BVH was to be eliminated under a condition of 1.5 atm for more 30 sec with regardless of the shape of BVH. It was also observed that the residual void in BVH was not formed after the reliability test with JEDEC standard.

  • PDF

Blind Via Hole Drilling Using DPSS UV laser (DPSS UV 레이저를 이용한 블라인드 비아 홀 가공)

  • 김재구;장원석;신보성;장정원;황경현
    • Laser Solutions
    • /
    • v.6 no.1
    • /
    • pp.9-16
    • /
    • 2003
  • Micromachining using the DPSS 3rd Harmonic Laser (355nm) has outstanding advantages as a UV source in comparison with Excimer lasers in various aspects such as maintenance cost, maskless machining, high repetition rate and so on. It also has the greater absorptivity of many materials in contrast to other IR sources. In this paper, the process for micro-drilling of blind hole in Cu/PI/Cu substrate with the DPSS UV laser and the scanning device is investigated by the experimental methods. It is known that there is a large gap between the ablation threshold of copper and that of PI. We use the Archimedes spiral path for the blind hole with different energy densities to ablate the different material. Finally, the blind via hole of diameter 100$\mu\textrm{m}$ and 50$\mu\textrm{m}$ was drilled.

  • PDF

Laser Drilling System for Fabrication of Micro via Hole of PCB (인쇄회로기판의 미세 신호 연결 홀 형성을 위한 레이저 드릴링 시스템)

  • Cho, Kwang-Woo;Park, Hong-Jin
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.10
    • /
    • pp.14-22
    • /
    • 2010
  • The most costly and time-consuming process in the fabrication of today's multi-layer circuit board is drilling interconnection holes between adjacent layers and via holes within a layer. Decreasing size of via holes being demanded and growing number of via holes per panel increase drilling costs. Component density and electronic functionality of today's multi-layer circuit boards can be improved with the introduction of cost-effective, variable depth laser drilled blind micro via holes, and interconnection holes. Laser technology is being quickly adopted into the circuit board industry but can be accelerated with the introduction of a true production laser drilling system. In order to get optimized condition for drilling to FPCB (Flexible Printed Circuit Board), we use various drill pattern as drill step. For productivity, we investigate drill path optimization method. And for the precise drilling the thermal drift of scanner and temperature change of scan system are tested.

Picoseconds Laser Drilling and Platform (피코초 레이저 드릴링 공정 및 플랫폼)

  • Suh, Jeong;Shin, Dong-Sig;Sohn, Hyon-Kee;Song, Jun-Yeob
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.10
    • /
    • pp.40-44
    • /
    • 2010
  • Laser drilling is an enabling technology for Through Silicon Via (TSV) interconnect applications. Recent advances in picoseconds laser drilling of blind, micron sized vias in silicon is presented here highlighting some of the attractive features of this approach such as excellent sidewall quality. In this study, we dealt with comparison of heat affection around drilled hole between a picosecond laser and a nanosecond laser process under the UV wavelength. Points which special attention should be paid are that picosecond laser process lowered experimentally recast layer, surface debris and micro-crack around hole in comparison with nanosecond laser process. These finding suggests that laser TSV process has possibility to drill under $10{\mu}m$ via. Finally, the laser drilling platform was constructed successfully.

Immersion Silver as a Final Finish for Printed Circuit Board (인쇄회로기판의 표면실장용 치환은도금)

  • Kim, Yu-Sang;Jeong, Gwang-Mi
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2015.05a
    • /
    • pp.133-133
    • /
    • 2015
  • 최근 인쇄회로기판의 실장용 표면처리 개발에서 전도성이 우수하며, 또한 실장성도 우수한 치환형 무전해 은도금의 개발이 진행되고 있다. KENNY 등은 인쇄회로기판에서 가장 우수한 실장용 표면처리의 치환형무전해 은도금기술을 발견하였다. 이 기술은 무전해 니켈도금/치환금도금과 비교하여 비교적 낮은 비용으로 양산이 가능하며, 우수한 솔더링 특성과 신뢰성이 높은 것이 특징이다. 개발한 치환형 무전해 은도금은 무전해 니켈도금/치환금도금에 비해서 저온에서 처리가 가능하며, 처리시간도 짧은 것이 특징이다. 특히 대량생산과 미세한 블라인드 비어홀(BVH, Blind Via Hole) 내부로의 균일 석출을 위한 수평컨베이어나 수직침적라인 등에 모두 적용이 가능하다.

  • PDF