• Title/Summary/Keyword: blood flow

Search Result 2,208, Processing Time 0.032 seconds

Changes in Posterior Cerebral Artery Blood flow Velocity Following Head rotation and body Positioning (머리회전과 측정자세에 따른 뒤대뇌동맥의 혈류속도 변화)

  • Park, Min-Chull;Kim, Jong-Soon
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.10 no.1
    • /
    • pp.115-120
    • /
    • 2015
  • PURPOSE: Vertebrobasilar insufficiency (VBI) should be carefully assessed in patient for whom manipulation of the cervical spine is to be undertaken. The purpose of this study was to investigate the changes in posterior cerebral artery blood flow velocity following head and body positioning by transcranial doppler ultrasonography (TCD) in healthy subjects. METHODS: Twenty two healthy female (mean age $20.77{\pm}1.30yrs.$) participants volunteered to participate in the study. None of the participants had a history of neck pain or headache within the last 6 months. To evaluate the cerebral blood flow, we measured the mean flow velocity of the posterior cerebral artery unilaterally (right side). The blood flow velocity was measured under 3 different head positions (in a neutral head position, ipsilateral head rotation and contralateral head rotation position) and 2 different body conditions (supine position and sitting position). RESULTS: The mean blood flow velocity of posterior cerebral artery was decreased in body positioning from supine to sitting (p<.05), but the decreased rate of blood flow velocity in posterior cerebral artery did not change significantly between ipsilateral head rotation and contralateral head rotation (p>.05). CONCLUSION: These result of our study show that body positioning (sitting and supine) affect the blood flow velocity in posterior cerebral artery.

NUMERICAL ANALYSIS FOR THE EFFECT OF BLOOD FLOW RATE AND BIFURCATION ANGLE ON THE LOCATION OF ANTERIOR CIRCULATION ANEURYSM AND THE CHANGE OF BLOOD FLOW CHARACTERISTICS AFTER ANEURYSM FORMATION (전방순환동맥류 발생 위치에 대한 혈류량 및 분지각의 영향 및 동맥류 발생 전후의 유동 변화에 관한 수치해석 연구)

  • Kim, S.Y.;Ro, K.C.;Ryou, H.S.
    • Journal of computational fluids engineering
    • /
    • v.16 no.4
    • /
    • pp.64-71
    • /
    • 2011
  • Cerebral aneurysm mostly occurs at a bifurcation of the circle of Willis. When the cerebral aneurysm is ruptured, a disease like subarachnoid hemorrhage and stroke is caused and this can be even deadly for patients. Generally it is known that causes of the intracranial aneurysm are a congenital deformity of the artery and pressure or shear stress from the blood flow. A blood flow pattern and the geometry of the blood vessel are important factors for the aneurysm formation. Research for several hemodynamic indices has been performed and these indices can be used for the prediction of aneurysm initiation and rupture. Therefore, the numerical analysis was performed for hemodynamic characteristics of the blood flow through the cerebral artery applying the various bifurcation angle and flow rate ratio. We analyze the flow characteristics using indices from the results of the numerical simulation. In addition, to investigate the flow pattern in the aneurysm according to the bifurcation angle and the flow rate ratio, we performed the numerical simulation on the supposition that the aneurysm occurs.

Rheographic View of the Change in the Renal Blood Flow in Acute Hemorrhage (Rheogram으로 본 실혈시 신장혈액유통 변화)

  • Chang, Se-Gu;Shin, Dong-Hoon
    • The Korean Journal of Physiology
    • /
    • v.5 no.1
    • /
    • pp.59-69
    • /
    • 1971
  • Studies were undertaken on the changes in the renal blood flow by relating them with the alterations in the amplitudes in the rheogram of rabbits. The changing pattern of the electrical conductivity was recorded by means of the needle electrodes inserted into the kidney and the surrounding aluminium foil which was grounded. The Impedance Rheograph manufactured by the Narco Company was used. The small artifact which persisted after ligation of the renal vessels was subtracted from the value obtained in each pulsatile wave in the rheogram. The animals were nembutalized intravenously, 30 mg/kg. A plastic canule was inserted into the carotid artery and the arterial blood pressure was monitored continuously with the pressure transducer connected to the physiograph. Stepwise bleedings were performed on the animal. The first bleeding was between 13 to 18 ml in the amount, and it was folowed by consecutive hemorrhages, 5 or 10 ml each time. The total amount of bleeding was summed as much as 1.5-2% of the body weight. Two minutes fter each bleeding th arterial blood pressure, ECG and the rheogram were taken. That was the necessary time to obtain the stabilized picture of each parameter. After closing the bleeding process, the shed blood was retransfused into the animal and the response in the renal blood flow was observed as well as the arterial blood pressure. Particularly the presence or absence of the autoregulatory mechanism in the situation of the hemorrhage was also studied. The results obtained were as follows: 1. In 7 cases out of 22, that was about one third of the total number of experiments, the autoregulatory mechanism of the renal blood flow persisted even in acute hemorrhage, and the decreases in the renal blood flow were less than 10% of the control values even when the arterial blood pressure dropped to 66-87% of the original value obtained before the bleeding. 2. Because of the stepwise bleeding the exact blood pressure at which the renal blood flow reduced as much as one third of the control value could not be obtained. However, the results revealed that the approximate pressure, expressed as percentage of the control value, was 50-60% in 3 cases, 61-70% in 4 cases and 71-80% in 8 cases. In one case the decrease in the renal blood flow exceeded one third of the control value before the pressure dropped to 80% of the control. 3. In 19 cases the decreases in the renal blood flow exceeded one half of the control values by hemorrhage. Then the arterial blood pressure revealed less than 40% of the control value in 6-cases. In 2 cases the pressure was 51-60% of the control pressure. In 5 cases the range of bleed pressure was 61-70%, and in e remaining 6 cases the pressure ranged from 71 to 80% of e control value. 4. Out of 15 cases of retransfusion after definite decreases in the renal blood flow loller·ing the hemorrhage, 9 cases restored their renal blood flow. On the contrary 6 cases showed low values even when the shed blood was retransfused. 5. Theories concerning the mechanism of the autoregulation of the renal blood flow were reviewed for the purpose of explanation of the results obtained. However, there are much to be done before greater satisfaction

  • PDF

FSI simulation of pulsatile flow in the blood vessel (혈관내 맥동유동의 FSI 모사)

  • Kim, Yun-Gi;Kim, Kyung-Chun
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.1484-1486
    • /
    • 2008
  • Characteristics of pulsatile flow in 3-dimensional elastic vessel wall should be investigated in order to understand the physiological blood flow in human body. In this study, the modelling of the physiological blood flow in the elastic blood vessel is proposed. Variation of the pressure and the velocity wavefroms are obtained using the FSI method

  • PDF

3-D Flow Analysis of Blood and Blood Substitutes in a Double Branching Model (이중 분지관내 혈액 및 혈액대용유체의 3차원 유동해석)

  • Suh, Sang-Ho;Yoo, Sang-Sin;Roh, Hyung-Woon
    • Journal of Biomedical Engineering Research
    • /
    • v.18 no.2
    • /
    • pp.187-196
    • /
    • 1997
  • The three-dimensional flow analysis using the finite volume method is presented to compare the steady flow characteristics of blood with those of blood substitutes such as water and aqueous polymer solution in an idealized double branching model. The model is used to simlllate the region of the abdominal aorta near the celiac and superior mesenteric branches. Apparent viscosities of blood and the aqueous Separan solution are represented as a function of shear rate by the Carreau model, Water and aqueoiu Separan AP-273 500wppm solution are frequently used as blood substitutes in vitro experiments. Water is a typical Newtonian fluid and blood and Separan solution are non-Newtonian fluids. Flow phenomena such as velocity distribution, pressure variation and wall shear stress distribution of water, blood and polymer solution are quite different due to differences of the rheological characteristics of fluids. Flow phenomena of polymer solution are qualitatively similar to those of blood but the phenomena of water are quite different from those of blood and polymer solution. It is recommended that a lion-Newtonian fluid which exhibits very similar rheological behavior to blood be used in vitro experiments. A non-Newtonian fluid whose rheological characteristics are very similar to those of blood should be used to obtain the meaninylll hemodynamic data for blood flow in vitro experiment and by numerical analysis

  • PDF

Clinical Analysis on Relation Between Blood Flow and Patency af Arteriovenous Fistula for Hemodialysis (혈액투석을 위한 동정맥류 조성술후 혈류량과 동정맥루 개존에 관한 임상적 고찰)

  • 김창회
    • Journal of Chest Surgery
    • /
    • v.24 no.12
    • /
    • pp.1167-1172
    • /
    • 1991
  • Since March 1988 we have performed 133 arteriovenous fistulae for hemodialysis in 121 patients with chronic renal failure. Of the 133 cases of arteriovenous fistulae, follow-up evaluation was possible for 80 cases which performed in 69 patients. The relation between blood flow and patency rate and duration of arteriovenous fistula was examined. The overall 6 - 12 - 18 -, and 24 - month patency rates of arteriovenous fistulae were 82%, 64%a, 62%, and 57%, respectively. The maximum blood flow was 150 ~ 350ml /min[mean 217.1$\pm$44.27]. The patency duration was evaluated in patients divided into three groups owing to maximum blood flow through the fistulae. The range of maximum blood flow was 150 ~ 200ml /min for group A, 200 ~ 250ml /min for group B, and above 250ml /min for group C. The mean duration of the patency was 10.7$\pm$7.60 months in group A, 14.9$\pm$9.82 months in group B, and 21.6$\pm$11.16 months in group C[p<0 05]. With increased maximum blood flow, the duration of the patency was longer in group A than group B and C [r=0.39, p<0. 05]. The maintenance blood flow was 100 ~ 250ml /min[mean 179.2$\pm$37.26 ml/min]. When the maintenance blood flow was above 200ml /min, long-term patency rate was higher than the group below 200ml /min[r=0.48, p<0.01]. In the same range of blood flow, patency duration of the patients with using their own blood vessels were longer than the patients with using vascular graft for A-V fistula. We concluded that the patency of the arteriovenous fistulae was closely correlated with the blood flow through the fistulae.

  • PDF

Implementation of Non-Invasive Pressurized Cerebral Perfusion Platform (가압식 비침습적 대뇌 혈류 증가 장치의 구현)

  • Lee, Jean;Yu, Hyeong-gon;Kim, Young-kil
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2017.05a
    • /
    • pp.171-174
    • /
    • 2017
  • One of the treatments and preventions of strokes such as ischemic stroke is to increase cerebral blood flow. This aims to minimize the size of the stroke by increasing the quantity of blood to the cerebral region circuitously. Several ways to increase cerebral blood flow are a therapy though drugs and through surgery. However these invasive method giving a burden to the patient, the problem of inducing a number of complications were noted. In this thesis, we propose a non-invasive cerebral blood flow augmentation device to compensate for the disadvantages of these invasive treatments. To compensate for the shortcomings of the existing cerebral blood flow device, apply a positive measure of the patient's extremities to measure the blood pressure of the patient's blood pressure and conduct a frontal injection of blood flow to increase blood flow. Although somewhat inadequate blood flow increases compared to conventional devices, blood flow can be significantly increased, which can be selectively.

  • PDF

A Numerical Analysis on the Curved Bileaflet Mechanical Heart Valve (MHV): Leaflet Motion and Blood Flow in an Elastic Blood Vessel

  • Bang, Jin-Seok;Choi, Choeng-Ryul;Kim, Chang-Nyung
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.9
    • /
    • pp.1761-1772
    • /
    • 2005
  • In blood flow passing through the mechanical heart valve (MHV) and elastic blood vessel, hemolysis and platelet activation causing thrombus formation can be seen owing to the shear stress in the blood. Also, fracture and deformation of leaflets can be observed depending on the shape and material properties of the leaflets which is opened and closed in a cycle. Hence, comprehensive study is needed on the hemodynamics which is associated with the motion of leaflet and elastic blood vessel in terms of fluid-structure interaction. In this paper, a numerical analysis has been performed for a three-dimensional pulsatile blood flow associated with the elastic blood vessel and curved bileaflet for multiple cycles in light of fluid-structure interaction. From this analysis fluttering phenomenon and rebound of the leaflet have been observed and recirculation and regurgitation have been found in the flow fields of the blood. Also, the pressure distribution and the radial displacement of the elastic blood vessel have been obtained. The motion of the leaflet and flow fields of the blood have shown similar tendency compared with the previous experiments carried out in other studies. The present study can contribute to the design methodology for the curved bileaflet mechanical heart valve. Furthermore, the proposed fluid-structure interaction method will be effectively used in various fields where the interaction between fluid flow and structure are involved.

The Clinical Study on Bell's Palsy Patients with TCD Measurement (TCD를 이용한 말초성(末梢性) 구안괘사환자에 대(對)한 임상적(臨床的) 고찰(考察))

  • Lee, Byung-Ryul;Ann, Taek-Won;Lee, Hyun
    • Journal of Pharmacopuncture
    • /
    • v.6 no.2
    • /
    • pp.91-104
    • /
    • 2003
  • Objective : This study was carried to make out the connection between cerebral artery blood flow velocity and ischemic theory that presumed the cause of Bell's palsy. Method : We measured cerebral artery blood flow velocity each external carotid artery, internal carotid artery, common carotid artery, siphon, superficial temporal artery by TCD to 20 patients who diagnosed as facial nerve palsy from march 2001 to July 2001 and all objectives devided two groups as palsy side. A group is right side facial nerve palsy and B group is left facial nerve palsy. Results : 1. There is no effective change of blood flow in external carotid artery either A, B group. 2. There is no effective change of blood flow in internal carotid artery either A, B group. 3. There is no effective change of blood flow in common carotid artery either A, B group. 4. There is no effective change of blood flow in siphon artery either A, B group. 5. There is no effective change of blood flow in superficial temporal artery either A, B group.

Effect of hematocrit on hemorheological characteristics of blood flow in a microtube (헤마토크릿에 따른 혈액의 유변학적 특성 변화)

  • Ji, Ho-Seong;Lee, Jung-Yeop;Lee, Sang-Joon
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2006.12a
    • /
    • pp.111-112
    • /
    • 2006
  • In order to investigate flow characteristics of blood flow in a micro tube ($100{\mu}m$ in diameter) according to hematocrit, in-vitro experiments were carried out using a micro-PIV technique. The micro-PIV system consists of a microscope, a 2 head Nd:YAG laser, a 12 bit cooled CCD camera and a delay generator. Blood was supplied into the micro tube using a syringe pump. Hematocrit of blood was controlled to be 20%, 30% and 40%. The blood flow has a cell free layer near the tube wall and its thickness was changed with increasing the flow rate and hematocrit. The hemorheological characteristics such as shear rate and viscosity were evaluated using the velocity field data measured. As the flow rate increased, the blunt velocity profile in the tube center was sharpened. The viscosity of blood was rapidly increased with decreasing shear rate, especially in the region of low shear rate, changing RBC rheological properties. The variation of velocity profile and blood viscosity shows typical characteristics of Non-Newtonian fluids. On the basis of inflection points, the cell free layer and two-phase flow consisting of plasma and suspensions including RBCs were clearly discriminated.

  • PDF