• Title/Summary/Keyword: blood glucose

Search Result 3,197, Processing Time 0.023 seconds

The Modulatory Role of Spinally Located Histamine Receptors in the Regulation of the Blood Glucose Level in D-Glucose-Fed Mice

  • Sim, Yun-Beom;Park, Soo-Hyun;Kim, Sung-Su;Kim, Chea-Ha;Kim, Su-Jin;Lim, Su-Min;Jung, Jun-Sub;Ryu, Ohk-Hyun;Choi, Moon-Gi;Suh, Hong-Won
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.18 no.1
    • /
    • pp.41-46
    • /
    • 2014
  • The possible roles of spinal histamine receptors in the regulation of the blood glucose level were studied in ICR mice. Mice were intrathecally (i.t.) treated with histamine 1 (H1) receptor agonist (2-pyridylethylamine) or antagonist (cetirizine), histamine 2 (H2) receptor agonist (dimaprit) or antagonist (ranitidine), histamine 3 (H3) receptor agonist (${\alpha}$-methylhistamine) or antagonist (carcinine) and histamine 4 (H4) receptor agonist (VUF 8430) or antagonist (JNJ 7777120), and the blood glucose level was measured at 30, 60 and 120 min after i.t. administration. The i.t. injection with ${\alpha}$-methylhistamine, but not carcinine slightly caused an elevation of the blood glucose level. In addition, histamine H1, H2, and H4 receptor agonists and antagonists did not affect the blood glucose level. In D-glucose-fed model, i.t. pretreatment with cetirizine enhanced the blood glucose level, whereas 2-pyridylethylamine did not affect. The i.t. pretreatment with dimaprit, but not ranitidine, enhanced the blood glucose level in D-glucose-fed model. In addition, ${\alpha}$-methylhistamine, but not carcinine, slightly but significantly enhanced the blood glucose level D-glucose-fed model. Finally, i.t. pretreatment with JNJ 7777120, but not VUF 8430, slightly but significantly increased the blood glucose level. Although histamine receptors themselves located at the spinal cord do not exert any effect on the regulation of the blood glucose level, our results suggest that the activation of spinal histamine H2 receptors and the blockade of spinal histamine H1 or H3 receptors may play modulatory roles for up-regulation and down-regulation, respectively, of the blood glucose level in D-glucose fed model.

Association of curry consumption with blood lipids and glucose levels

  • Kwon, Youngjoo
    • Nutrition Research and Practice
    • /
    • v.10 no.2
    • /
    • pp.212-220
    • /
    • 2016
  • BACKGROUND/OBJECTIVES: Curcumin, an active ingredient in turmeric, is highly consumed in South Asia. However, curry that contains turmeric as its main spice might be the major source of curcumin in most other countries. Although curcumin consumption is not as high in these countries as South Asia, the regular consumption of curcumin may provide a significant health-beneficial effect. This study evaluated whether the moderate consumption of curry can affect blood glucose and lipid levels that become dysregulated with age. SUBJECTS/METHODS: This study used data obtained from the Korea National Health and Nutrition Examination Survey, conducted from 2012 to 2013, to assess curry consumption frequency as well as blood glucose and blood lipid levels. The levels of blood glucose and lipids were subdivided by age, sex, and body mass index, and compared according to the curry consumption level. The estimates in each subgroup were further adjusted for potential confounding factors, including the diagnosis of diseases, physical activity, and smoking. RESULTS: After adjusting for the above confounding factors, the blood glucose and triglyceride levels were significantly lower in the moderate curry consumption group compared to the low curry consumption group, both in older (> 45) male and younger (30 to 44) female overweight individuals who have high blood glucose and triglyceride levels. CONCLUSIONS: These results suggest that curcumin consumption, in an ordinary diet, can have health-beneficial effects, including being helpful in maintaining blood glucose and triglyceride levels that become dysregulated with age. The results should be further confirmed in future studies.

The Preparation of Polyacrylonitrile Diagnostic Membranes for Blood Glucose Measurements (2) : Effects of Blood Constituents on the Measurements of Glucose Concentration (혈당측정을 위한 폴리아크릴로니트릴 진단막의 제조(2) : 혈액속의 성분들이 글루코우즈의 농도 측정에 미치는 영향)

  • Kwon, Suk-Ky;Choi, Mi-Ok
    • Membrane Journal
    • /
    • v.18 no.4
    • /
    • pp.268-273
    • /
    • 2008
  • Diagnostics membranes which were made of polyacrylonitrile were prepared for the measurements of blood glucose concentration. Final absorbances at 680nm through polyacrylonitrile diagnostic membranes were measured at various concentration of glucose in blood. It was found that the end-point results of varing absorbance values as time (K/S) had a linear relationship toward the blood glucose concentration. The effects of possible constituents in human blood on the glucose concentration measurements were examined. As a result, most of the chemicals did not affect seriously on the blood glucose measurements.

Effect of Maltitol on Blood Glucose and Insulin Responses in Normal and Diabetic Subjects (정상인과 당뇨병 환자에 있어서 Maltitol 경구 투여가 혈당과 혈액내 insulin농도 변화에 미치는 영향)

  • 문수재
    • Journal of Nutrition and Health
    • /
    • v.23 no.4
    • /
    • pp.270-278
    • /
    • 1990
  • This study was an attempt to investigate the usefulness of maltitol as an alternative sweetener. The acute effects of oral ingestion of 50g of maltitol or glucose on blood glucose and insulin levels following test dose were investigated by using five healthy normal subjects and ten diabetic patients. The data demonstrated marked differences between the utilization of maltitol and of glucose in both groups. Blood glucose and insulin responses to glucose were significantly greater than to maltitol in normal subjects(p<0.05). In diabetic patients, the peaks of the mean increment in blood glucose concentration after glucose and maltitol were reached at 60 minutes with mean values of 135mg/dl and 49mg/dl, respectively, and these differences were statistically significant(p<0.001). As for blood insulin responses in diabetic patients, the peak of the mean increment after glucose was 25.03$\mu$U/ml at 120 minutes. In contrast insulin responses to maltitol were significantly lower than to glucose(p<0.05), and the peak value was 7.98$\mu$u/ml at 60min. From these results it can be concluded that ingestion of maltitol resulted in significantly lower blood glucose and insulin increments than did glucose in both normal and diabetic patients.

  • PDF

The Analysis of Blood Glucose Level Difference According to the Exact Use of Blood Glucose Measurement Test Strips in $^{18}F$-FDG Wholebody PET ($^{18}F$-FDG를 이용한 전신 PET 검사에서 혈당 측정 검사지의 정확한 사용에 따른 혈당 수치의 차이 분석)

  • Park, Soon-Ki;Lee, Nam-Ki;NamGung, Chang-Kyung;Jung, Woo-Young
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.14 no.2
    • /
    • pp.100-103
    • /
    • 2010
  • Purpose: $^{18}F$-FDG wholebody PET is to evaluate the tumor using glucose metabolism. The blood glucose level is important factor that affects on a result of examination. High glucose levels may interfere with tumor targeting due to competitive inhibition of FDG uptake by D-glucose. The blood glucose level measurement test strips used in the blood glucose measurement are classified into the capillary blood measurement test strips and general purpose measurement test strips that can measure the venous blood and capillary blood altogether depends on cases. The purpose of the study was to compare the blood glucose measurements between simultaneously obtained capillary and venous blood samples using the capillary blood measurement test strips, general purpose measurement test strips. Materials and Methods: A total of 46 subjects (32 males, 14 females) with a mean age of $57.3{\pm}12.3$ years were enrolled. The blood glucose estimation was performed with a Optium Xceed Glucometer (Abbott). Simultaneous capillary and venous blood samples were obtained from each subject. The blood glucose levels were measured using the capillary blood measurement test strips and general purpose measurement test strips. The capillary and venous measurements were compared using a pared t-test. Results: The mean capillary and venous glucose values using the general purpose measurement test strips were $95.2{\pm}12.4$ mg/dL and $104.1{\pm}14.4$ mg/dL, giving a statistically significant difference (p<0.001) between the mean values for the capillary and venous glucose samples (9.0 mg/dL; 95% confidence interval (CI) -11.2 to -6.7). The mean capillary and venous glucose values using the capillary blood measurement test strips were $91.5{\pm}13.6$ mg/dL and $108.6{\pm}16.2$ mg/dL, giving a statistically significant difference (p<0.001) between the mean values for the capillary and venous glucose samples (16.6 mg/dL; 95% CI -20.2 to -13.0). Conclusion: When measuring the blood glucose level before $^{18}F$-FDG PET examination, since the incorrect blood glucose level can be measured, it should note to measure the blood glucose level of the venous blood by the capillary blood measurement test strips. Therefore the measurement variation can be reduced to fulfill the standardized measurement procedure with the suitable measurement test strips, the preparation of the PET examination will be able to be clearly confirmed. In addition, the standardized procedure of the following measurement on the area which is same at all times the blood area in the blood glucose measurement among a capillary or a vein will be needed.

  • PDF

Near-infrared Spectroscopic Measurement of Glucose Under the Existence of Other Major Blood Components (혈액의 주요 구성물질 존재 하에서 근적외분광분석법을 이용한 글루코오스 측정)

  • 백주현;강나루;우영아;김효진
    • YAKHAK HOEJI
    • /
    • v.48 no.3
    • /
    • pp.171-176
    • /
    • 2004
  • This study was described for measuring clinically relevant levels of glucose in undiluted plasma and whole blood by near-infrared (NIR) spectroscopy. Result from an initial measurement of major blood components powder was over-lapped the absorption bands of glucose at 1500-1600 nm. However, the NIR data of blood components were clearly separated by principle component analysis (PCA) space. By the use of partial least squares (PLS) regression, glucose concentrations in undiluted plasma and whole blood could be determined with standard errors of prediction (SEP) of 15 mg/dl and 76 mg/dl, respectively. Although these blood components possessed strong absorption bands that overlapped with the absorption bands of glucose, successful calibration models could be carried out.

Effect of Cholera Toxin Administered Supraspinally or Spinally on the Blood Glucose Level in Pain and D-Glucose Fed Animal Models

  • Sim, Yun-Beom;Park, Soo-Hyun;Kang, Yu-Jung;Kim, Sung-Su;Kim, Chea-Ha;Kim, Su-Jin;Jung, Jun-Sub;Ryu, Ohk-Hyun;Choi, Moon-Gi;Choi, Seong-Soo;Suh, Hong-Won
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.17 no.2
    • /
    • pp.163-167
    • /
    • 2013
  • In the present study, the effect of intrathecal (i.t.) or intracerebroventricular (i.c.v.) administration with cholera toxin (CTX) on the blood glucose level was examined in ICR mice. The i.t. treatment with CTX alone for 24 h dose-dependently increased the blood glucose level. However, i.c.v. treatment with CTX for 24 h did not affect the blood glucose level. When mice were orally fed with D-glucose (2 g/kg), the blood glucose level reached to a maximum level at 30 min and almost returned to the control level at 120 min after D-glucose feeding. I.c.v. pretreatment with CTX increased the blood glucose level in a potentiative manner, whereas i.t. pretreatment with CTX increased the blood glucose level in an additive manner in a D-glucose fed group. In addition, the blood glucose level was increased in formalin-induced pain animal model. I.c.v. pretreatment with CTX enhanced the blood glucose level in a potentiative manner in formalin-induced pain animal model. On the other hand, i.t. pretreatment with CTX increased the blood glucose level in an additive manner in formalin-induced pain animal model. Our results suggest that CTX administered supraspinally or spinally differentially modulates the regulation of the blood glucose level in D-glucose fed model as well as in formalin-induced pain model.

Comparison of Li-heparinized Versus Na-fluorinated Plasma for Routine Blood Glucose Determination Using Hexokinase Procedure (Hexokinase 방법을 이용한 Heparin 혈장과 NaF 혈장 시료의 혈당 분석치 비교)

  • Moon, In-Kyung
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.39 no.1
    • /
    • pp.25-30
    • /
    • 2007
  • In this study, the two sampling methods for blood glucose measurement were evaluated in order to reduce pre-analytical error. For this purpose, glucose levels of Li-heparinized plasma (LHP) and Na-fluorinated plasma (NFP) in blood collected from healthy volunteers were determined by using routine hexokinase procedures. The percentage range of pre-analytical error was quantitated by comparing LHP glucose values with NFP glucose values according to delaying analytical time (0, 60, and 120 min). LHP glucose values were decreased by 6.6% in 60 min., 17.7% in 120 min, whereas NFP glucose values decreased by 1.1% in 60 min, 2.0% in 120 min. Therefore it may be recommended that the NFP sampling method should be used for routine blood glucose determination in diabetes mellitus diagnosis.

  • PDF

Effect of pertussis toxin pretreated centrally on blood glucose level induced by stress

  • Suh, Hong-Won;Sim, Yun-Beom;Park, Soo-Hyun;Sharma, Naveen;Im, Hyun-Ju;Hong, Jae-Seung
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.20 no.5
    • /
    • pp.467-476
    • /
    • 2016
  • In the present study, we examined the effect of pertussis toxin (PTX) administered centrally in a variety of stress-induced blood glucose level. Mice were exposed to stress after the pretreatment of PTX (0.05 or 0.1 mg) i.c.v. or i.t. once for 6 days. Blood glucose level was measured at 0, 30, 60 and 120 min after stress stimulation. The blood glucose level was increased in all stress groups. The blood glucose level reached at maximum level after 30 min of stress stimulation and returned to a normal level after 2 h of stress stimulation in restraint stress, physical, and emotional stress groups. The blood glucose level induced by cold-water swimming stress was gradually increased up to 1 h and returned to the normal level. The intracerebroventricular (i.c.v.) or intrathecal (i.t.) pretreatment with PTX, a $G_i$ inhibitor, alone produced a hypoglycemia and almost abolished the elevation of the blood level induced by stress stimulation. The central pretreatment with PTX caused a reduction of plasma insulin level, whereas plasma corticosterone level was further up-regulated in all stress models. Our results suggest that the hyperglycemia produced by physical stress, emotional stress, restraint stress, and the cold-water swimming stress appear to be mediated by activation of centrally located PTX-sensitive G proteins. The reduction of blood glucose level by PTX appears to due to the reduction of plasma insulin level. The reduction of blood glucose level by PTX was accompanied by the reduction of plasma insulin level. Plasma corticosterone level up-regulation by PTX in stress models may be due to a blood glucose homeostatic mechanism.

Association Analysis between Genes' Variants for Regulating Mitochondrial Dynamics and Fasting Blood Glucose Level

  • Jung, Dongju;Jin, Hyun-Seok
    • Biomedical Science Letters
    • /
    • v.22 no.3
    • /
    • pp.107-114
    • /
    • 2016
  • Maintenance of fasting blood glucose levels is important for glucose homeostasis. Disruption of feedback mechanisms are a major reason for elevations of glucose level in blood, which is a risk factor for type 2 diabetes mellitus that is mainly caused by malfunction of pancreatic beta-cell and insulin. The fasting blood glucose level has been known to be influenced by genetic and environmental factors. Mitochondria have many functions for cell survival and death: glucose metabolism, fatty acid oxidation, ATP generation, reactive oxygen species (ROS) metabolism, calcium handling, and apoptosis regulation. In addition to these functions, mitochondria change their morphology dynamically in response to multiple signals resulting in fusion and fission. In this study, we aimed to examine association between fasting blood glucose levels and variants of the genes that are reported to have functions in mitochondrial dynamics, fusion and fission, using a cohort study. A total 416 SNPs from 36 mitochondrial dynamics genes were selected to analyze the quantitative association with fasting glucose level. Among the 416 SNPs, 4 SNPs of PRKACB, 13 SNPs of PPP3CA, 6 SNPs of PARK2, and 3 SNPs of GDAP1 were significantly associated. In this study, we were able to confirm an association of mitochondrial dynamics genes with glucose levels. To our knowledge our study is the first to identify specific SNPs related to fasting blood glucose level.