• Title/Summary/Keyword: bolted connections

Search Result 144, Processing Time 0.026 seconds

Modelling of flange-stud-slab interactions and numerical study on bottom-flange-bolted composite-beam connections

  • Xiaoxiang Wang;Yujie Yu;Lizhong Jiang;Zhiwu Yu
    • Steel and Composite Structures
    • /
    • v.47 no.2
    • /
    • pp.203-216
    • /
    • 2023
  • The composite beam connections often encountered fracture failure in the welded bottom flange joint, and a bottom flange bolted connection has been proposed to increase the deformation ability of the bottom flange joint. The seismic performance of the bottom flange bolted composite beam connection was suffered from both the composite action of concrete slab and the asymmetric load transfer mechanisms between top and bottom beam flange joints. Thus, this paper presents a comprehensive numerical study on the working mechanism of the bottom flange bolted composite beam connections. Three available modelling methods and a new modelling method on the flange-stud-slab interactions were compared. The efficient numerical modeling method was selected and then applied to the parametric study. The influence of the composite slab, the bottom flange bolts, the shear composite ratio and the web hole shape on the seismic performance of the bottom flange bolted composite beam connections were investigated. A hogging strength calculation method was then proposed based on numerical results.

Bearing resistance design of stainless steel bolted connections at ambient and elevated temperatures

  • Cai, Yancheng;Young, Ben
    • Steel and Composite Structures
    • /
    • v.29 no.2
    • /
    • pp.273-286
    • /
    • 2018
  • In recent years, significant progress has been made in developing design rules for stainless steel members, while the investigation on bolted connections is relatively limited, in particular at elevated temperatures. In this paper, experimental and numerical investigations on stainless steel bolted connections at ambient and elevated temperatures from the literature were reviewed. Firstly, the research program that focused on structural behavior of cold-formed stainless steel (CFSS) bolted connections at elevated temperatures carried out by the authors were summarized. Over 400 CFSS single shear and double shear bolted connection specimens were tested. The tests were conducted in the temperature ranged from 22 to $950^{\circ}C$ using both steady state and transient state test methods. It is shown that the connection strengths decrease as the temperature increases in the similar manner for the steady state test results and the transient state test results. Generally, the deterioration of the connection strengths showed a similar tendency of reduction to those of the material properties for the same type of stainless steel regardless of different connection types and different configurations. It is also found that the austenitic stainless steel EN 1.4571 generally has better resistance than the stainless steel EN 1.4301 and EN 1.4162 for bolted connections at elevated temperatures. Secondly, extensive parametric studies that included 450 specimens were performed using the verified finite element models. Based on both the experimental and numerical results, bearing factors are proposed for bearing resistances of CFSS single shear and double shear bolted connections that subjected to bearing failure in the temperature ranged from 22 to $950^{\circ}C$. The bearing resistances of bolted connections obtained from the tests and numerical analyses were compared with the nominal strengths calculated from the current international stainless steel specifications, and also compared with the predicted strengths calculated using the proposed design equations. It is shown that the proposed design equations are generally more accurate and reliable than the current design rules in predicting the bearing resistances of CFSS (EN 1.4301, EN 1.4571 and EN 1.4162) bolted connections at elevated temperatures. Lastly, the proposed design rules were further assessed by the available 58 results of stainless steel bolted connections subjected to bearing failure in the literature. It is found that the proposed design rules are also applicable to the bearing resistance design of other stainless steel grades, including austenitic stainless steel (EN 1.4306), ferritic stainless steel (EN 1.4016) and duplex stainless steel (EN 1.4462).

Bolted connections to tubular columns at ambient and elevated temperatures - A review

  • Leong, S.H.;Sulong, N.H. Ramli;Jameel, Mohammed
    • Steel and Composite Structures
    • /
    • v.21 no.2
    • /
    • pp.303-321
    • /
    • 2016
  • Tubular column members have been widely adopted in current construction due to its numerous advantages. However, the closed-section profile characteristics of tubular columns severely limit the connection possibilities. Welding type is acceptable but discouraged because of on-site issues. Blind-bolted connection is preferable because of its simplicity, economic benefit, and easy assembly. This paper presents a state-of-the-art review on bolted connections to tubular columns for bare steel tubes, including square and circular sections. Available studies on bolted connections at ambient and elevated temperatures are reviewed, but emphasis is given on the latter. Various methods of determining the connection performance through experimental, analytical, component based, and finite element approaches are examined. Future research areas are also identified.

Structural performance of cold-formed steel column bases with bolted moment connections

  • Chung, K.F.;Yu, W.K.;Wang, A.J.
    • Steel and Composite Structures
    • /
    • v.5 no.4
    • /
    • pp.325-340
    • /
    • 2005
  • This paper presents a thorough investigation into the structural performance of cold-formed steel column bases using double lipped C sections with bolted moment connections. A total of four column base tests with different connection configurations were carried out, and it was found that section failure under combined bending and shear was always critical. Moreover, the proposed column bases were demonstrated to be structurally efficient attaining moment resistances close to those of the connected sections. In order to examine the structural behaviour of the column base connections, a finite element model was established using shell and spring elements to model the sections and the bolted fastenings respectively. Both material and geometrical non-linearities were incorporated, and comparison between the test and the numerical results was presented in details. The design rules originally developed for bolted moment connections between lapped Z sections were adopted and re-formulated for the design of column base connections after careful calibration against the test data. Comparison on co-existing moments and shear forces at the critical cross-sections of the column bases was fully presented. It was shown that the proposed design and analysis method was structurally adequate to predict the failure loads under combined bending and shear for column bases with similar connection configurations.

Structural performance of cold-formed steel column bases with bolted moment connections

  • Chung, K.F.;Yu, W.K.;Wang, A.J.
    • Steel and Composite Structures
    • /
    • v.5 no.4
    • /
    • pp.289-304
    • /
    • 2005
  • This paper presents a thorough investigation into the structural performance of cold-formed steel column bases using double lipped C sections with bolted moment connections. A total of four column base tests with different connection configurations were carried out, and it was found that section failure under combined bending and shear was always critical. Moreover, the proposed column bases were demonstrated to be structurally efficient attaining moment resistances close to those of the connected sections. In order to examine the structural behaviour of the column base connections, a finite element model was established using shell and spring elements to model the sections and the bolted fastenings respectively. Both material and geometrical non-linearities were incorporated, and comparison between the test and the numerical results was presented in details. The design rules originally developed for bolted moment connections between lapped Z sections were adopted and re-formulated for the design of column base connections after careful calibration against the test data. Comparison on co-existing moments and shear forces at the critical cross-sections of the column bases was fully presented. It was shown that the proposed design and analysis method was structurally adequate to predict the failure loads under combined bending and shear for column bases with similar connection configurations.

Investigation of semi-rigid bolted beam connections on prefabricated frame joints

  • Irtem, E.;Turker, K.
    • Structural Engineering and Mechanics
    • /
    • v.12 no.4
    • /
    • pp.397-408
    • /
    • 2001
  • Bolted connections are used commonly in the precast reinforced concrete structures. In such structures, to perform structural analysis, behaviour of connections must be determined. In this study, elastic rotation stiffness of semi-rigid bolted beam connections, applied in industrial precast structures, are determined by finite element methods. The results obtained from numerical solutions are compared with an experimental study carried out for the same connections. Furthermore, stress distributions of the connection zone are determined and a reinforcement scheme is proposed. Thus, a more appropriate reinforcement arrangement for the connection zone is enabled. The connection joint of the prefabricated frame is described as rigid, hinged or elastic, and a static analysis of the frame system is performed for each case. Values of bending moments and displacements obtained from the three solutions are compared and the effects of elastic connection are discussed.

An experimental study of the behaviour of double sided bolted billet connections in precast concrete frames

  • Gorgun, Halil
    • Steel and Composite Structures
    • /
    • v.29 no.5
    • /
    • pp.603-622
    • /
    • 2018
  • Precast concrete structures are erected from individual prefabricated components, which are assembled on-site using different types of connections. In the present design of these structures, beam-to-column connections are assumed pin jointed. Bolted billet beam to-column connections have been used in the precast concrete industry for many years. They have many advantages over other jointing methods in component production, quality control, transportation and assembly. However, there is currently limited information concerning their detailed structural behaviour under vertical loadings. The experimental work has involved the determination of moment-relative rotation relationships for semi-rigid precast concrete connections in full-scale connection tests. The study reported in this paper was undertaken to clarify the behaviour of such connections under symmetrical vertical loadings. A series of full-scale tests was performed on sample column for which the column geometry and bolt arrangements conformed to successful commercial practice. Proprietary hollow core floor slabs were tied to the beams by 2T25 tensile reinforcing bars, which also provide the in-plane continuity across the connections. The contribution of the floor strength and stiffness to the flexural capacity of the joint is currently neglected in the design process for precast concrete frames. The flexural strength of the connections in the double-sided tests was at least 0.93 times the predicted moment of resistance of the composite beam and slab. The secant stiffness of the connections ranged from 0.94 to 1.94 times the flexural stiffness of the attached beam. In general, the double-sided connections were found to be more suited to a semi-rigid design approach than the single sided ones. The behaviour of double sided bolted billet connection test results are presented in this paper. The behaviour of single sided bolted billet connection test results is the subject of another paper.

Experimental investigation of carbon steel and stainless steel bolted connections at different strain rates

  • Cai, Yancheng;Young, Ben
    • Steel and Composite Structures
    • /
    • v.30 no.6
    • /
    • pp.551-565
    • /
    • 2019
  • A total of 36 carbon steel and stainless steel bolted connections subjected to shear loading at different strain rates was experimentally investigated. The connection specimens were fabricated from carbon steel grades 1.20 mm G500 and 1.90 mm G450, as well as cold-formed stainless steel types EN 1.4301 and EN 1.4162 with nominal thickness 1.50 mm. The connection tests were conducted by displacement control test method. The strain rates of 10 mm/min and 20 mm/min were used. Structural behaviour of the connection specimens tested at different strain rates was investigated in terms of ultimate load, elongation corresponding to ultimate load and failure mode. Generally, it is shown that the higher strain rate on the bolted connection specimens, the higher ultimate load was obtained. The ultimate loads were averagely 2-6% higher, while the corresponding elongations were averagely 8-9% higher for the test results obtained from the strain rate of 20 mm/min compared with those obtained from the lower strain rates (1.0 mm/min for carbon steel and 1.5 mm/min for stainless steel). The connection specimens were generally failed in plate bearing of the carbon steel and stainless steel. It is shown that increasing the strain rate up to 20 mm/min generally has no effect on the bearing failure mode of the carbon steel and stainless steel bolted connections. The test strengths and failure modes were compared with the results predicted by the bolted connection design rules in international design specifications, including the Australian/New Zealand Standard (AS/NZS4600 2018), Eurocode 3 - Part 1.3 (EC3-1.3 2006) and North American Specification (AISI S100 2016) for cold-formed carbon steel structures as well as the American Specification (ASCE 2002), AS/NZS4673 (2001) and Eurocode 3 - Part 1.4 (EC3-1.4 2015) for stainless steel structures. It is shown that the AS/NZS4600 (2018), EC3-1.3 (2006) and AISI S100 (2016) generally provide conservative predictions for the carbon steel bolted connections. Both the ASCE (2002) and the EC3-1.4 (2015) provide conservative predictions for the stainless steel bolted connections. The EC3-1.3 (2006) generally provided more accurate predictions of failure mode for carbon steel bolted connections than the AS/NZS4600 (2018) and the AISI S100 (2016). The failure modes of stainless steel bolted connections predicted by the EC3-1.4 (2015) are more consistent with the test results compared with those predicted by the ASCE (2002).

Evaluation of Strength Properties for Bolted Connections with Lumber from Small Diameter Logs

  • Park, Joo-Saeng;Park, Chun-Young;Chun, Su-Kyoung;Lee, Jun-Jae
    • Journal of the Korean Wood Science and Technology
    • /
    • v.30 no.3
    • /
    • pp.59-65
    • /
    • 2002
  • EYM (European Yield Model), which was adopted in NDS (National Design Specification for wood construction), has been used in Korea without any verification of the analysis of bolted wood connections. In the case of applying lumber from domestic small diameter logs, however, there are some problems with the direct application of EYM ; 1) relatively low dowel bearing strength and dimensional stability due to a large amount of immature wood, 2) effect of MC (moisture contents) on the dowel bearing strength of wood and the yield load of a bolted connection. To evaluate the strength properties of bolted connections with lumber from domestic small diameter logs, effect of MC on the dowel bearing strength of wood was investigated and double shear bolted connection tests were performed. As the MC of wood increased, the dowel bearing strength was linearly reduced, even under 19% MC, which showed that adjustment, not considered in NDS, was required. Double shear bolted connection tests indicated that effect of MC on yield load should be considered in order to determine design value.

Analysis Study on Ultimate Strength of Single-shear Bolted Connections with Austenitic Stainless Steel(STS201) with Varied End and Edge distances (연단거리를 변수로 갖는 오스테나이트계 스테인리스강(STS201) 일면전단 볼트접합부의 최대내력에 관한 해석연구)

  • Cha, Eun-Young;Hwang, Bo-Kyung;Lee, Hoo-Chang;Kim, Tae-Soo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.5
    • /
    • pp.1-11
    • /
    • 2017
  • This study focused on the ultimate behaviors(ultimate strength and fracture mode ) of single shear bolted connection with austenitic sainless steel(STS201) and curling effect on the ultimate strength using finite element analysis based on test results. Main variables are end distance in the parallel direction to loading and edge distance in the perpendicular direction to loading. The validation of finite element analysis procedures was verified through the comparisons of ultimate strength, fracture mode and curling(out-of-plane deformation) occurrence between test results and numerical predictions. Curling was observed in both test and analysis results and it reduced the ultimate strength of single- shear bolted connections with relatively long end distances. Strength reduction ratios caused by curling were estimated quantitatively by maximum 19%, 32%, respectively for specimens with edge distance, 48 mm and 60 mm compared with strengths of uncurled connections with restrained out-of-plane deformation. Finally, analysis strengths were compared with current design strengths and it is found that design block shear equations did not provide the accurate predictions for bolted connections with strength reduction by curling.