• 제목/요약/키워드: bond failure

검색결과 714건 처리시간 0.029초

Bond properties of steel and sand-coated GFRP bars in Alkali activated cement concrete

  • Tekle, Biruk Hailu;Cui, Yifei;Khennane, Amar
    • Structural Engineering and Mechanics
    • /
    • 제75권1호
    • /
    • pp.123-131
    • /
    • 2020
  • The bond performance of glass fibre reinforced polymer (GFRP) bars and that of steel bars embedded in Alkali Activated Cement (AAC) concrete are analysed and compared using pull-out specimens. The bond failure modes, the average bond strength and the free end bond stress-slip curves are used for comparison. Tepfers' concrete ring model is used to further analyse the splitting failure in ribbed steel bar and GFRP bar specimens. The angle the bond forces make with the bar axis was calculated and used for comparing bond behaviour of ribbed steel bar and GFRP bars in AAC concrete. The results showed that bond failure mode plays a significant role in the comparison of the average bond stress of the specimens at failure. In case of pull-out failure mode, specimens with ribbed steel bars showed a higher bond strength while specimens with GFRP bars showed a higher bond stress in case of splitting failure mode. Comparison of the bond stress-slip curves of ribbed steel bars and GFRP bars depicted that the constant bond stress region at the peak is much smaller in case of GFRP bars than ribbed steel bars indicating a basic bond mechanism difference in GFRP and ribbed steel bars.

부착파괴를 고려한 Headed Reinforcement의 파괴메카니즘 (Failure Mechanism of Headed Reinforcement including Bond Failure)

  • 박종욱;홍성걸
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2003년도 가을 학술발표회 논문집
    • /
    • pp.234-237
    • /
    • 2003
  • Previous researches about headed reinforcement have not been concerned about bond failure which is quite important is some cases. In this paper, failure mechanism including bond failure was presented in order to define the contribution of bond stress at the time failure occurs. Examined with design codes and test results, it is proved to be rational to consider the contribution of bond stress in determining the ultimate pull-out capacity of headed reinforcement. Direct adaptation of design code for anchor bolt without modification for the contribution of bond stress will lead to underestimate the capacity of headed reinforcement.

  • PDF

지르코니아 코핑과 전장도재 간의 전단결합강도와 파절양상 비교 (A comparative study of the shear bond strength and failure mode between zirconia copings and veneering ceramics)

  • 김원영;전병욱;정인성
    • 대한치과기공학회지
    • /
    • 제37권4호
    • /
    • pp.243-250
    • /
    • 2015
  • Purpose: The aim of this study was to investigate the shear bond strength between various commercial zirconia coping and veneering ceramic, and to observe the failure mode. Methods: For each zirconia block (iJAM Emerald, LUXEN Smile block, ICE Zirkon transluzent), 10 rectangular specimens were layered with Cercon ceram kiss, IPS e.max ceram, ICE Zirkon ceramic according to recommended by the manufacturer. The shear bond strength tests of the veneering porcelain to zirconia were carried out until fracture by a universal testing machine. After the shear bond tests, failure modes were characterized visually, under a stereomicroscope, such as adhesive, cohesive, or mixed. Data were analyzed with One-way ANOVA followed by Scheffe's tests. Results: The shear bond strength ($mean{\pm}SD$) of zirconia-veneer ceramic were JC group $13.9{\pm}3.6MPa$; JE group $17.7{\pm}2.4MPa$; JI group $15.1{\pm}2.5MPa$; LC group $9.5{\pm}1.5MPa$; LE group $16.2{\pm}2.3MPa$; LI group $12.6{\pm}0.8MPa$; ZC group $16.0{\pm}2.3MPa$; ZE group $18.5{\pm}3.4MPa$; and ZI group $15.3{\pm}3.2MPa$. The One-way ANOVA showed a significant difference between groups (p<0.05). The failure mode in most experimental groups was mixed failure, except for the LC group, which showed adhesive failure, and JE group, LE group and ZE group showed cohesive failure. Conclusion: For IPS e.max ceram, the shear bond strength value was highest for all kinds of zirconia blocks. For ICE Zirkon transluzent, the shear bond strength value was highest for all kinds of veneering ceramics. Most of experimental group interfaces revealed mixed failure mode.

유지형태와 접착제 종류에 따른 수지 접착형 수복물과 법랑질간의 전단결합강도 및 파절양상에 관한 연구 (A STUDY ON THE SHEAR BOND STRENGTH BETWEEN RESIN-BONDED RETAINERS AND ENAMEL ACCORDING TO THE ADHESIVE RESINS AND RETENTION TYPES)

  • 조미숙;양재호
    • 대한치과보철학회지
    • /
    • 제33권4호
    • /
    • pp.662-684
    • /
    • 1995
  • The purpose of this study was to evaluate the shear bond strength between various resin-bonded retainers and enamel according to the adhesive resins and retention types and observe the bond filure modes with scanning electron microscope(SEM). For this purpose, the followin eight sub-groups were tested in shear bond strength : 1) electrochemically etched group(Verabond) using Panavia EX and Superbond C&B 2) tin-plated group(PG-S) using Panavia EX and Superbond C&B 3) salt-treated group(Verabond) using Panavia EX and Superbond C&B 4) meshtreated group(Verabond) using Panavia EX and Superbond C&B. Thermocycling test was conducted on the condition of 15 second dwell time each in $5^{\circ}C$ and $55^{\circ}C$bath. Shear bond strength was measured by Instron Universal Testing Machine(medel 1125). The obtained results were as follows : 1. After thermocycling, the shear bond strengths of tin-plated group and electrochemically etched group were significantly greater than those of salt-treated group and mesh-treated group. And the shear bond strength of Panavia EX was greater than that of Superbond C&B with salt-treated group and tin-plated group(p<0.05). 2. Before thermocycling, electrochemically etched group using Superbond C&B produced the greatest shear bond strength(p<0.01). 3. The shear bond strength of electrochemically etched group using Superbond C&B was significantly decreased after thermocycling(p<0.01). 4. In observation of bond failure modes before thermocycling, Panavia EX highly exhibited enamel fracture. Tin-plated group using Superbond C&B adhesive failure between metal and resin and electrochemically etched group using Superbond C&B exhibited adhesive failure between enamel and rdsin. 5. In observation of failure modes after thermocycling, Panavia EX exhibited cohesive failure and Superbond C&B exhibited adhesive failure between resin and metal.

  • PDF

Roles of Bearing Angle in Bond Action of Reinforcing Bars to Concrete

  • Choi OanChul
    • 콘크리트학회논문집
    • /
    • 제16권5호
    • /
    • pp.719-724
    • /
    • 2004
  • The ribs of deformed bars can split the cover concrete by wedging action or shear off the concrete in front of the ribs. As slip of deformed bars increases, the rib face angle is flattened by the crushed concrete wedge, which reduces the rib face angle to a smaller bearing angle. The roles of bearing angle are explored to simulate this observation. Analytical expressions to determine bond strength for splitting and pullout failure are derived, where the bearing angle is a key variable. As the bearing angle is reduced, splitting strength decreases and shearing strength increases. When splitting strength becomes larger than shearing strength, the concrete key is supposed to be sheared off and the bearing angle is reduced with decreasing the splitting strength. As bars slip, bearing angle decreases continually so that splitting bond strength is maintained to be less than shearing bond strength. The bearing angle is found to play a key role in controlling the bond failure and determination of bond strength of ribbed reinforcing steel in concrete structures.

콘크리트와 탄소섬유메쉬의 부착파괴 거동에 관한 실험적 연구 (An Experimental Study on the Bond Failure Behavior between Parent Concrete and CFM)

  • 오재혁;성수용;한병찬;윤현도;서수연;김태용
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2002년도 봄 학술발표회 논문집
    • /
    • pp.965-970
    • /
    • 2002
  • The strengthening of concrete structures in situ with externally bonded carbon fiber is increasingly being used for repair and rehabilitation of existing structures. Carbon fiber is attractive for this application due to its good tensile strength, resistances to corrosion, and low weight. Generally bond strength and behavior between concrete and carbon fiber mesh(CFM) is very important, because of the enhanced bond of CFM. Therefore if bond strength is sufficient, it will be expected to enhance reinforcement effect. If insufficient, reinforcement effect can not be enhanced because of bond failure between concrete and CFM. This study is to investigate the bond strength of CFM to the concrete using direct pull-out test and tensile-shear test. The key variables of the experiment are the location of clip, number of clips and thickness of cover mortar. The general results indicate that the clip anchorage technique for increasing bond strength with CFM appear to be effective to maintain the good post-failure behavior.

  • PDF

열피로에 의한 세라믹 코팅재의 파손 (Failure of Ceramic Coatings Subjected to Thermal Cyclings)

  • 한지원
    • 한국안전학회지
    • /
    • 제20권2호
    • /
    • pp.1-5
    • /
    • 2005
  • An experimental study was conducted to develop an understanding of failure of ceramic coating when subjected to a thermal cycling. Number of cycles to failure were decreased as the coating thickness and the oxide of bond coat were increased. Using the finite element method, an analysis of stress distribution in ceramic coatings was performed. Radial compressive stress was increased in the top/bond coat interface with increasing coating thickness and oxide of bond coat.

비귀금속합금 표면처리방법과 레진시멘트 종류가 접착인장강도에 미치는 영향에 관한 연구 (A STUDY OF TENSILE BOND STRENGTH ACCORDING TO VARIED TREATMENT METHODS OF NONPRECIOUS METAL SURFACE AND RESIN CEMENTS)

  • 양태진;임주환;조인호
    • 대한치과보철학회지
    • /
    • 제34권2호
    • /
    • pp.335-348
    • /
    • 1996
  • Retention is one of the major factors deciding the success and longevity of resin bonded restorations. The purpose of this study was to find a better resin cement and metal surface treatment method that would enhance the bonding strength. The bonding surfaces of Verabond, one of Ni-Cr-Be alloys, were treated with sandblasting(Group 1), sandblasting and EZ-Oxisor(Group 2), sandblasting and silicoating(Group 3), and than thay were bonded with All-Bond C & B, Panavia 21, Superbond C & B. The specimens were thermocycled, and the tensile bond strength was measured using the unive-rsal testing machine. Also the mode of bond failure was observed. The results were as folows. 1. The Superbond C & B showed the highest bond strength among the three resin cements and decreased in the order of Panavia 21, All-Bond C & B. There was significant differe-nce among them(p<0.05). 2. Group 3 showed the highest bond strength among the three metal surface treatment methods, and there was significant difference compared with Group 1 and Group 2(p<0.05). But there was no significant difference between Group 1 and Group 2. 3. Observing the mode of bond failure, Superbond C & B and Panavia 21 showed mostly cohesive failure in all groups. All-Bond C & B showed all types of bond failure in Group 3, but Group 1 and Group 2 showed only adhesive failure. 4. According to the results of this study, the silicoating method and 4-META containing resin cement were considered to be more acceptable for resin bonded restoration.

  • PDF

Thermocycling이 금속과 레진시멘트간의 결합강도에 미치는 영향 (THE EFFECT OF THERMOCYCLING ON BOND STRENGTH BETWEEN METAL AND RESIN CEMENT)

  • 강건구;정관호;최정호;안승근;송광엽;박찬운
    • 대한치과보철학회지
    • /
    • 제34권2호
    • /
    • pp.233-245
    • /
    • 1996
  • The purpose of this study was to evaluate the effect of thermocycling on bond strength between metal and resin cement according to thermocycling, and to observe the bond failure modes with optical microscope(X30). For this purpose, Super-Bond C & B and Panavia 21 resin cement were used. Metal specimens were made of Vera-Bond and the surface of specimens were sandblasted with $50{\mu}m$ aluminum oxide. All experimental groups were stored in $37^{\circ}C$ distilled water for 72 hours, followed by thermocycling between $5^{\circ}C$ and $55^{\circ}C$ with 15 second dwell time. 500, 1000, 2000 cycles of thermocycling were executed and the tensile bond strength was measured by Instron Universal Testing Machine(Model 4201) The obtained results were as follows : 1. Super-Bond C & B and Panavia 21 did not show statistically significant difference accor-ding to thermocycling test(P>0.05). 2. Super-Bond C & B specimens exhibited statistically significant higher tensile bond stre-ngth than Panavia 21 for all experimental groups(P<0.05). 3. Super-Bond C & B exhibited mixed mode failure with partial adhesive and partial cohe-sive failure, and most of Panavia 21 exhibited cohesive failure and some mixed mode failure.

  • PDF

Experimental Observation on Bond-Slip Behavior between Concrete and CFRP Plate

  • Yang, Dong-Suk;Hong, Sung-Nam;Park, Sun-Kyu
    • International Journal of Concrete Structures and Materials
    • /
    • 제1권1호
    • /
    • pp.37-43
    • /
    • 2007
  • This paper discusses the failure mode of reinforced concrete beams strengthened with composite materials based on six experimental set-ups to determine the FRP-to-concrete bond strength. Interfacial bond behavior between concrete and CFRP plates was discussed. Shear test were performed with different concrete compressive strengths (21 MPa and 28 MPa) and different bonding length (100 mm, 150 mm, 200 mm, and 250 mm). Shear test results indicate that the effective bond length (the bond length beyond which the ultimate load does not increase) was estimated as $196{\sim}204\;mm$ through linear regression analysis. Failure mode of specimens occurred due to debonding between concrete and CFRP plates. Maximum bond stress is calculated as about $3.0{\sim}3.3\;MPa$ from the relationships between bond stress and slip. Finally, the interfacial bond-slip model between CFRP plates and concrete, which is governed debonding failure, has been estimated from shear tests. Average bond stress was about $1.86{\sim}2.04\;MPa$, the volume of slip between CFRP plate and concrete was about $1.45{\sim}1.72\;mm$, and the fracture energy was found to be about $1.35{\sim}1.71\;N/mm$.