• Title/Summary/Keyword: bond loss

Search Result 171, Processing Time 0.033 seconds

Sensitivity analysis of flexural strength of RC beams influenced by reinforcement corrosion

  • Hosseini, Seyed A.;Shabakhty, Naser;Khankahdani, Fardin Azhdary
    • Structural Engineering and Mechanics
    • /
    • v.72 no.4
    • /
    • pp.479-489
    • /
    • 2019
  • The corrosion of reinforcement leads to a gradual decay of structural strength and durability. Several models for crack occurrence prediction and crack width propagation are investigated in this paper. Analytical and experimental models were used to predict the bond strength in the period of corrosion propagation. The manner of flexural strength loss is calculated by application of these models for different scenarios. As a new approach, the variation of the concrete beam neutral axis height has been evaluated, which shows a reduction in the neutral axis height for the scenarios without loss of bond. Alternatively, an increase of the neutral axis height was observed for the scenarios including bond and concrete section loss. The statistical properties of the parameters influencing the strength have been deliberated associated with obtaining the time-dependent bending strength during corrosion propagation, using Monte Carlo (MC) random sampling method. Results showed that the ultimate strain in concrete decreases significantly as a consequence of the bond strength reduction during the corrosion process, when the section reaches to its final limit. Therefore, such sections are likely to show brittle behavior.

Assessment of design methods for punching through numerical experiments

  • Kotsovou, Gregoria M.;Kotsovos, Gerasimos M.;Vougioukas, Emmanuel
    • Computers and Concrete
    • /
    • v.17 no.3
    • /
    • pp.305-322
    • /
    • 2016
  • The work is intended to demonstrate that the loss of bond between concrete and flexural steel which led in recent years a number of flat-slab structures to punching collapse under service loading conditions is also relevant to ultimate limit-state design. It is based on a comparative study of the results obtained from numerical experiments on flat slab-column sub-assemblages. The slabs were designed for punching either in compliance with the EC2 code requirements, which do not allow for such loss of bond, or in accordance with the compressive force-path method which considers the loss of bond between concrete and the flexural reinforcement in tension as the primary cause of punching. The numerical experiments are carried out through the use of a nonlinear finite element analysis package for which, although ample published evidence of its validity exists, additional proof of its suitability for the purposes of the present work is presented.

Theoretical model to determine bond loss in prestressed concrete with reinforcement corrosion

  • Ortega, Nestor F.;Moro, Juan M.;Meneses, Romina S.
    • Structural Engineering and Mechanics
    • /
    • v.65 no.1
    • /
    • pp.1-7
    • /
    • 2018
  • This paper reviews the mechanical effects produced by reinforcement corrosion of prestressed concrete beams. Specifically, modifications in the bonding of the tendon to the concrete that reduce service life and load bearing capacity are studied. Experimental information gathered from previous works has been used for the theoretical analysis. Relationships between bond stress loss and reinforcement penetration in the concrete, and concrete external cracking were established. Also, it was analysed the influence that has the location of the area affected by corrosion on the loss magnitude of the initial prestress.

Structural Capacity of RC Beam Retrofitted by CFS with Bond Loss (탄소섬유로 휨보강된 RC 보의 부착 손실에 대한 거동 특성)

  • Seo, Soo-Yeon;Yun, Hyun-Do;Choi, Ki-Bong
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.6
    • /
    • pp.795-802
    • /
    • 2007
  • Recently, various strengthening methods using carbon fiber sheets (CFS) have been developed for the rehabilitation of structures and applied to the concrete member. However, still research need arises in order to verify the structural capacity of RC member which experienced bond loss between concrete and CFS after strengthening. This is because previous research has focused on the development of design process and evaluation of structural capacity only for retrofit. The appearance of this loss may be initiated at just after retrofit construction. And it will be more serious when the layer number of CFS increases. In order to minimize above mistake in retrofit design using CFS, more exact evaluation process to predict the bond loss of CFS is required. The objective of this research is to study the variation of flexural structural capacity of beam which has experienced bond loss after strengthening using CFS. Experimental and analytical study are performed and evaluation of the previous formula is conducted. Test result showed that the significant strength deterioration was not found until the bond loss of 20%. Overall structural behavior of the beams can be predicted by nonlinear sectional analysis.

Effect of Sr/Zr Ratio and Organic Vehicle Addition on Bond Strength of $SrZrO_3 $ Thin Films ($SrZrO_3 $박막의 접착강도에 미치는 Sr/Zr 몰비와 유기화합물 첨가효과)

  • 이세종;이득용;예경환;송요승
    • Progress in Superconductivity and Cryogenics
    • /
    • v.4 no.1
    • /
    • pp.13-16
    • /
    • 2002
  • $SrZrO_3 $resistive oxide barriers on Ag sheathed Bi2223 tapes were prepared by the sol-gel and dip coating method to reduce AC coupling loss. The performance of the dip-coated $SrZrO_3 $ thin films was evaluated in terms of bond strength by varying the Sr/Zr mol ratio and the amount of organic vehicle (ethyl cellulose and a-terpineol) additives. The bond strength of the coatings increased as the Sr/Zr ratio decreased and the amount of organic vehicle rose, respectively. It was found that the effect of organic vehicle addition was more pronounced, suggesting that the adherence of the $SrZrO_3 $ films on Bi2223 tapes was governed primarily by the amount of organic vehicle additive.

Shear Strength of RC Beams with Exposed Reinforcement (부착 손실이 철근콘크리트 보의 전단강도에 미치는 영향)

  • Myung, Gun-Hak;Rhee, Chang-Shin;Kim, Dae-Joong;Mo, Gui-Suk;Kim, Woo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05a
    • /
    • pp.387-390
    • /
    • 2005
  • Reinforcement corrosion is the principal cause of deterioration of reinforced concrete. It is to be expected that loss of bond between concrete and tension reinforcement would lead to a reduction in shear strength of RC beams designed to fail in shear. This paper presents results of a FE analysis study to evaluate the shear strength of RC beams with exposed reinforcement represented the limiting condition of bond loss.

  • PDF

Vibrational Relaxation and Bond Dissociation of Excited Methylpyrazine in the Collision with HF

  • Oh, Hee-Gyun;Ree, Jong-Baik;Lee, Sang-Kwon;Kim, Yoo-Hang
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.10
    • /
    • pp.1641-1647
    • /
    • 2006
  • Vibrational relaxation and competitive C-$H_{methyl}$ and C-$H_{ring}$ bond dissociations in vibrationally excited methylpyrazine in the collision with HF have been studied by use of classical trajectory procedures. The energy lost by the vibrationally excited methylpyrazine upon collision is not large and it increases slowly with increasing total vibrational energy content between 20,000 and 45,000 $cm^{-1}$. Above the energy content of 45,000 $cm^{-1}$, however, energy loss decreases. The temperature dependence of energy loss is negligible between 200 and 400 K, but above 45,000 $cm^{-1}$ the energy loss increases as the temperature is raised. Energy transfer to or from the excited methyl C-H bond occurs in strong collisions with HF, that is, relatively large amount of translational energy is transferred in a single step. On the other hand, energy transfer to the ring C-H bond occurs in a series of small steps. When the total energy content ET of methylpyrazine is sufficiently high, either or both C-H bonds can dissociate. The C-$H_{methyl}$ dissociation probability is higher than the C-$H_{ring}$ dissociation probability. The dissociation of the ring C-H bond is not the result of the direct intermolecular energy flow from the direct collision between the ring C-H and HF but the result of the intramolecular flow of energy from the methyl group to the ring C-H stretch.

Evaluation of interest rate-linked DLSs

  • Kim, Manduk;Song, Seongjoo
    • Communications for Statistical Applications and Methods
    • /
    • v.29 no.1
    • /
    • pp.85-101
    • /
    • 2022
  • Derivative-linked securities (DLS) is a type of derivatives that offer an agreed return when the underlying asset price moves within a specified range by the maturity date. The underlying assets of DLS are diverse such as interest rates, exchange rates, crude oil, or gold. A German 10-year bond rate-linked DLS and a USD-GBP CMS rate-linked DLS have recently become a social issue in Korea due to a huge loss to investors. In this regard, this paper accounts for the payoff structure of these products and evaluates their prices and fair coupon rates as well as risk measures such as Value-at-Risk (VaR) and Tail-Value-at-Risk (TVaR). We would like to examine how risky these products were and whether or not their coupon rates were appropriate. We use Hull-White Model as the stochastic model for the underlying assets and Monte Carlo (MC) methods to obtain numerical results. The no-arbitrage prices of the German 10-year bond rate-linked DLS and the USD-GBP CMS rate-linked DLS at the center of the social issue turned out to be 0.9662% and 0.9355% of the original investment, respectively. Considering that Korea government bond rate for 2018 is about 2%, these values are quite low. The fair coupon rates that make the prices of DLS equal to the original investment are computed as 4.76% for the German 10-year bond rate-linked DLS and 7% for the USD-GBP CMS rate-linked DLS. Their actual coupon rates were 1.4% and 3.5%. The 95% VaR and TVaR of the loss for German 10-year bond rate-linked DLS are 37.30% and 64.45%, and those of the loss for USD-GBP CMS rate-linked DLS are 73.98% and 87.43% of the initial investment. Summing up the numerical results obtained, we could see that the DLS products of our interest were indeed quite unfavorable to individual investors.

Intramolecular Energy Flow and Bond Dissociation in the Collision between Vibrationally Excited Toluene and HF

  • Ree, Jong-baik;Kim, Sung-Hee;Lee, Taeck-Hong;Kim, Yu-Hang
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.4
    • /
    • pp.495-502
    • /
    • 2006
  • Intramolecular energy flow and C-$H_{methyl}$ and C-$H_{ring}$ bond dissociations in vibrationally excited toluene in the collision with HF have been studied by use of classical trajectory procedures. The energy lost by the vibrationally excited toluene upon collision is not large and it increases slowly with increasing total vibrational energy content between 20,000 and 45,000 $cm ^{-1}$. Above the energy content of 45,000 $cm ^{-1}$, however, energy loss decreases. Furthermore, in the highly excited toluene, toluene gains energy from incident HF. The temperature dependence of energy loss is negligible between 200 and 400 K. Energy transfer to or from the excited methyl C-H bond occurs in strong collisions with HF transferring relatively large amount of its translational energy (>> $k_BT$) in a single step, whereas energy transfer to the ring C-H bond occurs in a series of small steps. When the total energy content $E_T$ of toluene is sufficiently high, either C-H bond can dissociate. The C-$H_{methyl}$ dissociation probability is higher than the C-$H_{ring}$ dissociation probability. The dissociation of the ring C-H bond is not the result of the intermolecular energy flow from the direct collision between the ring C-H and HF but the intramolecular flow of energy from the methyl group to the ring C-H stretch. The C-$H_{ring}$${\cdot}{\cdot}{\cdot}$HF interaction is not important in transferring energy and in turn bond dissociation.

Predicting the flexural capacity of RC beam with partially unbonded steel reinforcement

  • Wang, Xiao-Hui;Liu, Xi-La
    • Computers and Concrete
    • /
    • v.6 no.3
    • /
    • pp.235-252
    • /
    • 2009
  • Due to the reduction of bond strength resulting from the high corrosion level of reinforcing bars, influence of this reduction on flexural capacity of reinforced concrete (RC) beam should be considered. An extreme case is considered, where bond strength is complete lost and/or the tensile steel are exposed due to heavy corrosion over a fraction of the beam length. A compatibility condition of deformations of the RC beam with partially unbonded length is proposed. Flexural capacity of this kind of RC beam is predicted by combining the proposed compatibility condition of deformations with equilibrium condition of forces. Comparison between the model's predictions with the experimental results published in the literature shows the practicability of the proposed model. Finally, influence of some parameters on the flexural capacity of RC beam with partially unbonded length is discussed. It is concluded that the flexural capacity of the beam may not be influenced by the completely loss of bond of the whole beam span as long as the tensile steel can yield; whether or not the reduction of the flexural capacity of the beam resulting from the loss of bond over certain length may occur depends on the detailed parameters of the given beam.