• Title/Summary/Keyword: bone marrow cells

Search Result 871, Processing Time 0.029 seconds

Comparison of Human Bone Marrow Stromal Cells with Fibroblasts in Cell Proliferation and Collagen Synthesis (골수기질세포와 섬유아세포의 세포 증식과 교원질 합성능 비교)

  • Han, Seung-Kyu;Yoon, Tae-Hwan;Kim, Woo-Kyung
    • Archives of Plastic Surgery
    • /
    • v.32 no.3
    • /
    • pp.343-346
    • /
    • 2005
  • It has been established that a graft of fibroblasts is able to improve wound healing. However, there has been no research on the effect of a graft of bone marrow stromal cells on wound healing. The wound healing process requires cell proliferation and production of extracellular matrix and various growth factors. The purpose of this study was to compare the abilities of human fibroblasts and bone marrow stromal cells, which contains mesenchymal stem cells, to proliferate and to produce collagen. Human bone marrow stromal cells and fibroblasts were isolated from bone marrow and dermis of the same patients and grown in culture respectively. Cell proliferation and production of type I collagen by human bone marrow stromal cells and dermal fibroblasts were examined by MTT method and by ELISA of cell culture media on day 1, 3, and 5 days post-incubating. The human bone marrow stromal cells showed 11-17% higher cell proliferation than fibroblasts at each time interval. The levels of type I collagen in the human bone marrow stromal cell group was also significantly higher than those in the fibroblast group. The results indicate that the grafts of human bone marrow stromal cells can show more promising effect than that of fibroblasts for healing of chronic wounds.

The Effect of Sodium Arsenite ($NaAsO_2$) on the Proliferation and Differentiation of Bone Marrow Cell Stimulated by G-CSF to Neutrophilic Granulocyte Lineage Cells (Sodium Arsenite ($NaAsO_2$)가 G-CSF에 의해 neutrophilic granulocyte계열 세포로 성장, 분화가 촉진된 골수 세포에 미치는 영향)

  • 한성수;박재현;정혜주;김영옥;정승태;김진호;최경백;강선경;조대현
    • Toxicological Research
    • /
    • v.16 no.4
    • /
    • pp.255-261
    • /
    • 2000
  • To investigate what kinds effect arsenic exert on the proliferation and differentiation of bone marrow cells to the neutrophilic granulocytes lineage cells, we treated sodium arsenite to murine bone marrow cells without or with the stimulation of G-CSF. When we added the various concentrations oj sodium arsenite to bone marrow cells without the stimulation of G-CSF for I, 3, 5 or 7 days, sodium arsenite did not make an any effect up to 2.5 $\mu\textrm{M}$$\mu\textrm{M}$$\mu\textrm{M}$$\mu\textrm{M}$$\mu\textrm{M}$$m\ell$ of G-CSF was induced by the co treatment of 12.5 $\mu\textrm{M}$

  • PDF

Stimulatory effects of Bordetella bronchiseptica antigen on bone marrow cells and immune memory responses (골수세포에 대한 Bordetella bronchiseptica 항원의 자극 효과 및 면역기억반응)

  • Yim, Seol-Hwa;Joo, Hong-Gu
    • Korean Journal of Veterinary Research
    • /
    • v.54 no.4
    • /
    • pp.203-208
    • /
    • 2014
  • Bone marrow is a hematological and immunological organ that provides multiple immune cells, including B lymphocytes, and thus plays a critical role in the efficacy of vaccine. We previously demonstrated that Bordetella (B.) bronchiseptica antigen has high immunogenicity in spleen cells, a peripheral immune organ. In this study, we investigated the immunogenicity of B. bronchiseptica antigen in bone marrow cells, a central immune organ. B. bronchiseptica antigen increased the cellular activity of bone marrow cells and significantly enhanced the production of nitric oxide, IL-6, and TNF-${\alpha}$. Bone marrow cells primed with B. bronchiseptica antigen in vivo were harvested and stimulated with the same antigen in vitro. The stimulation of B. bronchiseptica antigen significantly increased the cellular activity and proliferation rate of the primed cells. B. bronchiseptica antigen also greatly induced the production of antigen-specific antibody in the primed cells. Taken together, the present study demonstrated that B. bronchiseptica antigen can stimulate bone marrow cells, a central immune organ, and recall the immune response of the primed bone marrow cells.

Comparison of Bone Marrow Stromal Cells with Fibroblasts in Wound Healing Accelerating Growth Factor Secretion (골수기질세포 및 섬유아세포의 창상치유 촉진 성장인자 분비능 비교)

  • Kim, Se-Hyun;Han, Seung-Kyu;Yoon, Tae-Hwan;Kim, Woo-Kyung
    • Archives of Plastic Surgery
    • /
    • v.33 no.1
    • /
    • pp.1-4
    • /
    • 2006
  • Cryopreserved fibroblast implants represent a major advancement for healing of chronic wounds. Bone marrow stromal cells, which include the mesenchymal stem cells, have a low immunity-assisted rejection and are capable of expanding profoundly in a culture media. Therefore, they have several advantages over fibroblasts in clinical use. The ultimate goal of this study was to compare the wound healing accelerating growth factor secretion of the bone marrow stromal cells with that of the fibroblasts and this pilot study particularly focuses on the growth factor secretion to accelerate wound healing. Bone marrow stromal cells and fibroblasts were isolated from the same patients and grown in culture. At 1, 3, and 5 days post-incubating, secretion of basic fibroblast growth factor(bFGF), vascular endothelial growth factor (VEGF), and transforming growth factor beta(TGF-${\beta}$) were compared. In TGF-${\beta}$ secretion fibroblasts showed 12~21% superior results than bone marrow stromal cells. In contrast, bFGF levels in the bone marrow stromal cells were 47~89% greater than that in fibroblasts. The VEGF levels of the bone marrow stromal cells was 7~12 fold greater than that of the fibroblasts. Our results suggest that the bone marrow stromal cells have great potential for wound healing accelerating growth factor secretion.

Expression of Chemokine Receptors Involved in Receptor-Mediated Endocytosis of Bone Marrow-Derived Stromal Stem Cells (골수 유래 기질 줄기세포의 탐식작용 매개성 케모카인 수용체 발현 연구)

  • Jeong, Young-Sin;Byun, Hyang-Min;Shin, Jee-Young;Kim, Jung-Mogg;Chung, Hyung-Min;Oh, Yu-Kyoung
    • Journal of Pharmaceutical Investigation
    • /
    • v.33 no.4
    • /
    • pp.281-286
    • /
    • 2003
  • To design gene deliver systems which can deliver higher amounts of genes into stem cells, we studied the expression of receptors involved in the receptor-mediated endocytosis of bone marrow stromal stem cells. Bone marrow was isolated from ICR mice, and bone marrow stromal stem cells were isolated based on their plastic adherence property. Several culture conditions were screened for effective and continuous culture of marrow stromal stem cells. MesenCult medium was finally used to cultivate marrow stromal stem cells in vitro. As candidate receptors, various chemokine receptors were studied. Both bone marrow cells ad marrow-derived stromal stem cells showed expression of CC chemokine receptors (CCR) and CXC chemokine receptors (CXCR). Marrow stromal stem cells showed higher expression of CCR5 ad CXCR4 chemokine receptors as compared to other types of chemokine receptors. Moreover, though the expression of chemokine receptors generally decreased in most chemokine receptors with the cultivaton of marrow stromal stem cells, CCR5 and CXCR4 chemokine receptors retained the higher level of receptor expressions over prolonged periods. These results suggest that the ligands exhibiting specific binding to CCR5 or CXCR4 might be used to modify gene delivery systems for increased levels of receptor-mediated gene delivery into stromal stem cells.

Curcumin Inhibits Osteoclastogenesis by Decreasing Receptor Activator of Nuclear Factor-κB Ligand (RANKL) in Bone Marrow Stromal Cells

  • Oh, Sora;Kyung, Tae-Wook;Choi, Hye-Seon
    • Molecules and Cells
    • /
    • v.26 no.5
    • /
    • pp.486-489
    • /
    • 2008
  • Curcumin (diferuloylmethane), a pigment derived from turmeric, has anti-oxidant and anti-inflammatory activities. Accumulating evidence points to a biochemical link between increased oxidative stress and reduced bone density. Osteoclast formation was evaluated in co-cultures of bone marrow stromal cells (BMSC) and whole bone marrow cells (BMC). Expression of receptor activator of nuclear factor-${\kappa}B$ ligand (RANKL) was analyzed at the mRNA and protein levels. Exposure to curcumin led to dose-dependent suppression of osteoclastogenesis in the co-culture system, and to reduced expression of RANKL in $IL-1{\alpha}$-stimulated BMSCs. Addition of RANKL abolished the inhibition of osteoclastogenesis by curcumin, whereas the addition of prostaglandin $E_2$ ($PGE_2$) did not. The decreased osteoclastogenesis induced by curcumin may reduce bone loss and be of potential benefit in preventing and/or attenuating osteoporosis.

Effect of Cytokines and bFGF on the Osteoclast Differentiation Induced by $1\;{\alpha},25-(OH)_2D_3$ in Primary Murine Bone Marrow Cultures

  • Chae, Han-Jung;Kang, Jang-Sook;Bang, Byung-Gwan;Cho, Seoung-Bum;Han, Jo-Il;Choi, Joo-Young;Kim, Hyung-Min;Chae, Soo-Wan;Kim, Hyung-Ryong
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.3 no.6
    • /
    • pp.539-546
    • /
    • 1999
  • Bone is a complex tissue in which resorption and formation continue throughout life. The bone tissue contains various types of cells, of which the bone forming osteoblasts and bone resorbing osteoclasts are mainly responsible for bone remodeling. Periodontal disease represents example of abnormal bone remodeling. Osteoclasts are multinucleated cells present only in bone. It is believed that osteoclast progenitors are hematopoietic origin, and they are recruited from hematopoietic tissues such as bone marrow and circulating blood to bone. Cells present in the osteoclast microenvironment include marrow stromal cells, osteoblasts, macrophages, T-lymphocytes, and marrow cells. These cells produce cytokines that can affect osteoclast formation. In vitro model systems using bone marrow cultures have demonstrated that $IL-l{\beta},\;IL-3,\;TNF-{\alpha},$ bFGF can stimulate the formation of osteoclasts. In contrast, IL-4 inhibits osteoclast formation. Knowledge of cytokines and bFGF that affect osteoclast formation and their capacity to modulate the bone-resorbing process should provide critical insights into normal calcium homeostasis and disorders of bone turnover such as periodontal disease, osteoporosis and Paget's disease.

  • PDF

Gelatinous Transformation of Bone Marrow Mimicking Malignant Marrow-Replacing Lesion on Magnetic Resonance Imaging in a Patient without Underlying Devastating Disease

  • Lee, Joohee;Yoo, Yeon Hwa;Lee, Sarah;Kim, Hak Sun;Kim, Sungjun
    • Investigative Magnetic Resonance Imaging
    • /
    • v.22 no.1
    • /
    • pp.50-55
    • /
    • 2018
  • Gelatinous transformation of bone marrow is characterized by hypoplasia of fat cells with focal loss of hematopoietic cells and deposition of extracellular gelatinous substances. It is known to be associated with devastating underlying diseases that starve bone marrow. Here, we present a case of a patient whose magnetic resonance (MR) imaging findings of vertebral column were interpreted as metastasis or hematologic malignancy, however, the final diagnosis revealed a gelatinous transformation of bone marrow. This is the first report of gelatinous transformation of bone marrow without evidence of underlying devastating disease.

Bone marrow-derived stem cells contribute to regeneration of the endometrium

  • Lee, Youn Jeong;Yi, Kyong Wook
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.45 no.4
    • /
    • pp.149-153
    • /
    • 2018
  • Stem cells are undifferentiated cells capable of self-renewal and differentiation into various cell lineages. Stem cells are responsible for the development of organs and regeneration of damaged tissues. The highly regenerative nature of the human endometrium during reproductive age suggests that stem cells play a critical role in endometrial physiology. Bone marrow-derived cells migrate to the uterus and participate in the healing and restoration of functionally or structurally damaged endometrium. This review summarizes recent research into the potential therapeutic effects of bone marrow-derived stem cells in conditions involving endometrial impairment.

Biology and Potential Use of Chicken Bone Marrow-derived Cells

  • Ko, Dongwoo;Lim, Jeong Mook
    • Journal of Embryo Transfer
    • /
    • v.33 no.1
    • /
    • pp.31-40
    • /
    • 2018
  • Developmental aspects of chicken embryos showed dramatic difference compared with those of mammals and consequently, such difference in various developmental events leads to different feasibility in both clinical and industrial application. We have concentrated on the studies for using of chicken bone marrow cells and currently we found number of unique cellular properties. Through this article, we reviewed characteristics and cell signaling of osteogenic cells during endochondral ossification in chicken long bone.