• Title/Summary/Keyword: bottom mound

Search Result 10, Processing Time 0.027 seconds

Centrifuge Model Experiments and Numerical Analysis for the Bearing Capacity of Sloped Rubble Mound (경사진 사석층의 지지력에 관한 원심모형실험 및 수치해석)

  • Lee, Myung-Woog;Park, Byung-Soo;Jung, Gil-Soo;Yoo, Nam-Jae
    • Journal of Industrial Technology
    • /
    • v.24 no.B
    • /
    • pp.95-105
    • /
    • 2004
  • This paper is an experimental and numerical research works about the effects of the b earing capacity of sloped rubble mound on the density of rubble mound and the position of footing. Centrifuge model tests were performed to investigate the bearing capacity of rubble m ound by changing the density of rubble mound and the location of loading in forms of s trip loading to simulate the caisson. Materials of rubble mound used in the model tests were crushed rocks having similar value of uniformity coefficient to the value in field. Two different relative densities of 80% and 90% were prepared during tests. The dimens ions of centrifuge model were trapezoidal shape of model mound having the bottom wid th of mound, 30cm and height of mound, 10cm. Gravity level applied during the centrif uge test was 50G. Surcharge loading in the forms of strip loading was applied on the t op of the sloped model mound. Tests were carried out by changing the position of loadi ng. The rigid model footing was located in the center of top of the model rubble mound and the edge of model footing was at the crest of mound. Test results were analyzed by using the limit equilibrium methods proposed by Meyer hof(1957) and Bowles(1982) and the numerical approach with FLAC being available com mercially software. For the numerical estimations with FLAC, the rubble mound was si mulated with the constitutive relationship of Mohr-Coulomb elasto-plastic model.

  • PDF

Seepage-Advection-Dispersion Numerical Analysis of Barrier System of Offshore Rubble Mound Revetment Landfill Under Steady Flow (정상류 조건에서 경사식호안 해상폐기물매립장의 차수에 대한 침투이류 분산해석)

  • Hwang, Woong-Ki;Kim, Hyang-Eun;Kim, Tae-Hyung
    • Journal of the Korean Geosynthetics Society
    • /
    • v.18 no.4
    • /
    • pp.97-106
    • /
    • 2019
  • This study was conducted to propose a reasonable requirement regulation of barrier system of rubble mound revetment offshore landfill for preventing contaminant leakage. The barrier is composed with bottom layer and side barrier. The bottom layer was assumed as impermeable clay layer and side barrier was composed with HDPE sheet (primary element) and mid-protection layer (supplementary element). Seepage-advection-dispersion numerical analysis has been conducted using SEEP/W and CTRAN/W programs under steady flow. As the results, the minimum required barrier regulations for hydraulic conductivity and thickness of the bottom layer were suggested. For side barrier, the extended length of HDPE sheet and the hydraulic conductivity of mid-protection layer were also suggested.

Reflection Characteristics of Eco Block on Seabed

  • Kim, Jeong-Seok;Lee, Joong-Woo;Kang, Seok-Jin;Lee, Yong-Hun
    • Journal of Navigation and Port Research
    • /
    • v.38 no.4
    • /
    • pp.421-427
    • /
    • 2014
  • In order to protect coastal facilities mainly from wave and current actions, the self-locking eco blocks constituting elements of protecting shore structures against scouring were designed. These blocks are adapted to the sloping bottom, coastal dunes, and submerged coastal pipelines, counteracting the destructive and erosive impulse action. A series of laboratory experiments has been conducted to investigate the reflection of water waves over and against a train of protruded or submerged shore structures and compare the reflecting capabilities of incident waves including wave forces. In this study the hydraulic model experiment was conducted to identify the performance of newly designed water affinity eco blocks to keep the coast slope and bottom mound from scouring by reduction of the wave reflection and to convince stability of the block placement. Revised design of each block element was also tested for field conditions. From the result of experiments, the field applicability of the developed blocks and placement was discussed afterward.

Generalization of an Evaluation Formula for Bearing Pressures on the Rubble Mound of Gravity-Based Harbor Structures (중력식 항만구조물의 사석마운드 지반반력 평가식의 일반화)

  • Woo-Sun Park
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.35 no.6
    • /
    • pp.128-137
    • /
    • 2023
  • In this study, the bearing pressure on the rubble mound of a gravity-based harbor structure with an arbitrarily shaped bottom was targeted. Assuming that the bottom of the structure is a rigid body, the rubble mound was modeled as a linear spring uniformly distributed on the bottom that resists compression only, and the bearing pressure evaluation formula was derived. It was confirmed that there were no errors in the derivation process by showing that when the bottom was square, the derived equation was converted to the equation used in the design. In addition, the validity of the derived equation was proven by examining the behavior and convergence value of the bearing pressure when an arbitrarily shaped bottom converges into a square one. In order to examine the adequacy of the method used in the current design, the end bearing pressure for the pre-designed breakwater cross-section was calculated and compared with the values in the design document. As a result, it was shown that the method used for design was not appropriate as it gave unsafe results. In particular, the difference was larger when the eccentricity of the vertical load was large, such as in the case of extreme design conditions.

Analysis of Wave Reflection Characteristics for Bottom Proection Bio Block (해저침식방호용 바이오 블록의 파랑반사특성 분석)

  • Lee, J.W.;Kim, J.S.;Kim, H.J.;Lee, Y.H.;Lee, D.H.
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2013.06a
    • /
    • pp.270-272
    • /
    • 2013
  • In order to protect coastal facilities mainly from wave and current actions, the self-locking bio blocks constituting component elements of protecting structures against scouring were designed. These blocks are adapted to the sloping bottom, coastal dunes, and submerged coastal base counteracting the destructive and erosive impulse action. A series of laboratory experiments is necessary to investigate the reflection of water waves over and against a train of protruded or submerged shore structures and compare the reflecting capabilities of incident waves including wave forces. In this study the hydraulic model experiment was conducted to identify the performance of newly designed water affinity bio blocks to keep the coast slope and bottom mound from scouring by reduction of the reflection coefficient and to convince stability of the placements. Revised design of each element of blocks were also tested for field conditions. From the result of experiment, the field applicability of the developed blocks and placement is to be discussed afterward.

  • PDF

Seepage-Advection-Dispersion Numerical Analysis of Offshore Rubble Mound Revetment Landfill Under Transient Flow (비정상류 조건에서 경사식호안매립장에 대한 침투이류 분산해석)

  • Hwang, Woong-Ki;Kim, Hyang-Eun;Kim, Tae-Hyung
    • Journal of the Korean Geosynthetics Society
    • /
    • v.19 no.4
    • /
    • pp.1-9
    • /
    • 2020
  • This study analyzes contaminant movement under transient flow in a rubble mound revetment offshore waste landfill barrier system that prevents contaminant runoff. The barrier system consists of bottom layer and side barrier. For the bottom layer system, impermeable clay layer is used. For the side barrier system, the HDPE barrier sheet (primary element) plays the main role, and the intermediate protection layer (supplementary element) is responsible for the barrier. Seepage, advection, dispersion numerical analysis was carried out using SEEP / W and CTRAN / W programs. As a result, under abnormal conditions considering the fluctuation in tidal range, the volume and direction of the flow velocity vector of the pore water change with time and the dispersion concentration of the contaminant changes. When comparing the case of 2 m tidal range and 8 m tidal range, the larger the tide value, the higher the concentration of contaminant under abnormal conditions. It was found that the rate of change of the concentration of the contaminant changed depending on the change in the tidal range, and as a result, the outflow of the pollutant was smaller than that in the steady flow state.

Measurement Tests of Friction Coefficient of Precast Concrete Used in Haber Construction (항만용 Precast Concrete 구조물의 마찰계수 측정 실험)

  • Kim, Myung-Sik;Baek, Dong-Il;Kim, Kang-Min
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.11a
    • /
    • pp.73-76
    • /
    • 2006
  • The shape and dimension of precast concrete structure used in habor construction(caisson, block, etc.) are considered productive facility abilities, demanded minimum dimension in work of each member, the relation between the depth of water and a location of leaving, work conditions of towing and leaving, after leaving, differential settlement, etc. As this study examined friction resistance effect of financially designed precast concrete structure formed convex in bottom and stone mound.

  • PDF

An Experimental Study for the Falling Test and Upwelling Effect of the Artificial Upwelling Structures in Flow Field (흐름장에서 인공용승구조물의 블록투하 및 용승효과에 관한 실험적 연구)

  • Jeon, Yong-Ho;Lee, Gyung-Sun;Kang, Yoon-Koo;Ryu, Cheong-Ro
    • Journal of Ocean Engineering and Technology
    • /
    • v.21 no.4
    • /
    • pp.21-27
    • /
    • 2007
  • The multiplication equipment of marine products with artificial upwelling structures could be useful in the fishing grounds near coastal areas. Artificial upwelling structures could move the inorganic nutrients from the bottom to the surface. Artificial upwelling structures have been used to improve the productivity of fishing grounds. Until now, research on artificial upwelling structures has been related to the distribution of the upwelling region, upwelling structures, and the marine environment. However, little work on the optimum design of the rubber-mound artificial upwelling structures has been done to increase the efficiency of drawing up the inorganic nutrients. This study investigated the optimum cross-section of rubber-mound artificial upwelling structures by means of hydraulic experiments. The hydraulic experiments include the falling test of rubber. Based on the results of the falling test, the relationship between the length of the rubber mound and water velocity, and the relationship between the shape of the rubber and the stratification parameter were established. In addition, the effect of the void ratio of various artificial structures on the stratification parameter was studied. From the experiment, it was found that upwelling could be enhanced when the ratio of structure height to water depth was 0.3 and stratification parameter was 3.0. The upwelling was not improved when the void ratio exceeded 0.43. The optimum size of rubber mounds was determined when the incident velocity was influenced by the mean horizontal length rather than size of block.

Probability of Failure on Sliding of Monolithic Vertical Caisson of Composite Breakwaters (혼성제 직립 케이슨의 활동에 대한 파괴확률)

  • 이철응
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.14 no.2
    • /
    • pp.95-107
    • /
    • 2002
  • A reliability analysis on sliding of monolithic vertical caisson of composite breakwaters is extensively carried out in order to make the basis for the applicability of reliability-based design method. The required width of caisson of composite breakwaters is determined by the deterministic design method including the effect of impulsive breaking waves as a function of water depth, also studied interactively with the results of reliability analyses. It is found that the safety factor applied in current design may be a little over-weighted magnitude for the sliding of caisson. The reliability index/failure probability is also seen to slowly decrease as the water depth increases for a given wave condition and a safety factor. In addition, optimal safety factor can roughly be evaluated by using the concept of target reliability index for several incident waves. The variations of optimal safety factor may be resulted from the different wave conditions. Finally, it may be concluded from the sensitivity studies that the reliability index may be more depended on the incident wave angles and the wave periodsrather than on the bottom slopes and the thickness of rubble mound.

Irregular Wave Model for Youngil Bay (영일만의 불규칙파 모형)

  • 정신택;채장원;이동영
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.8 no.2
    • /
    • pp.146-150
    • /
    • 1996
  • The waves are most important dynamical factors for the analyses of structural stability and topographical changes on coastal engineering field. However, wind-generated waves are very irregular in shape and transformed through refraction, diffraction and shoaling when they propagate into shallow water where bottom topography and water depth vary significantly. Recently, Vincent and Briggs (1989) reported hydraulic model experiments for the transformation of monochromatic and directionally-spread irregular waves passing over a submerged elliptical mound. They concluded that for the case of combined refraction-diffraction of waves by a shoal, the propagation characteristics of the irregular and equivalent regular wave conditions can be vastly different. On the irregular wave transformation have been made theoretical and numerical studies for several years. Although theoretical and laboratory studies on wave transformation have progressed considerably, field measurement and comparison of numerical results with related theories are still necessary for the prediction of the phenomena in reality. In this study, field measurement of both incident and transformed waves in Youngil Bay were made using various kinds of equipments, and numerical computations were made on the transformed frequency spectra of large waves propagating over the shoal using Chae and Jeong's (1992) elliptic model. It is shown that this model results agree very well with field data, and thus the applicability of the model is now validated.

  • PDF