• Title/Summary/Keyword: branched crack

Search Result 11, Processing Time 0.025 seconds

Analysis of a Branched Crack in a Semi-Infinite Plate Under Tension and Bending Moment (인장과 굽힘을 받는 반무한 평판내의 분기균열 해석)

  • 김유환;범현규;박치용
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.15 no.3
    • /
    • pp.433-440
    • /
    • 2002
  • A branched crack in a semi-infinite plate under uniform tension and bending moment is considered in this study By using the superposition, the stress and moment intensity factors for the branched crack subjected to uniform tension and bending moment we evaluated. The stress intensity factors we obtained by using the finite element method and the J-based mutual integral. The moment intensity factors are calculated by extrapolating the values of the moment new the crack tip. Numerical results lot the normalized stress and moment Intensity factors we shown as functions of the ratio of branched crack length to main crack length and the branching angle.

Intensity Factors for a Branched Crack in a Semi-Infinite Plate Under Tension and Bending Moments (인장과 굽힘을 받는 반 무한 평판내의 분기균열에 대한 강도계수)

  • 김유환;범현규;박치용
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.461-464
    • /
    • 2000
  • A branched crack in a semi-infinite plate under tension and bending moment is considered. Intensity factors of the stress and moment for the branched crack are evaluated. The stress intensity factors are obtained by using the finite element method and the J-based mutual integral. The moment intensity factors are calculated by extrapolating the values of the moment near the crack tip. Approximate expressions are also obtained as functions of the branched crack length and branching angle.

  • PDF

A Study on the Initial Crack Curving Angle of Isotropic/Orthotropic Bimaterial

  • Hawong, Jai-Sug;Shin, Dong-Chul;Lee, Ouk-Sub
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.12
    • /
    • pp.1594-1603
    • /
    • 2002
  • In this paper, when the initial propagation angle of a branched crack is calculated from the maximum tangential stress criterion (MTSC) and the minimum strain energy density criterion (MSEDC), it is essential that you use stress components in which higher order terms are considered and stress components at the position in a distance 0.005㎜ from the crack tip (=r). When an interfacial crack propagates along the interface at a constant velocity, the initial propagation angles of the branched crack are similar. to the mode mixities (phase angle) and the theoretical values obtained from MTSC and MSEDC. The initial propagation angle of the branched crack depends considerably on the stress intensity factor K$_2$.

Behaviour of Fatigue Crack Propagation under Mixed Mode(I+II) with variation of Angle and Crack Length (혼합모드(I+II)하에서 각도와 균열길이 변화를 갖는 피로균열 전파 거동)

  • 정의효
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.9 no.5
    • /
    • pp.73-79
    • /
    • 2000
  • The applications of fracture mechanics have traditionally concentrated on cracks loaded by tensile stresses, and growing under an opening or mode I mechanism. However, many cases of failures occur from growth of cracks subjected to mixed mode loading. Several criteria have been proposed regarding the crack growth direction under mixed mode loadings. This paper is aimed at investigation of fatigue crack growth behaviour under mixed mode(I+II) with variation of angle and pre-crack length in two dimensional branched type precrack. Especially the direction of fatigue crack propagation was predicted and effective stress intensity factor was calculated by finite element analysis(FEA. In this paper, the maximum tangential stress(MTS) criterion was used to predict crack growth direction. Not only experiment but also finite element analysis was carried out and the theoretical predictions were compared with experimental results.

  • PDF

Behaviour of Fatigue Crack Propagation under Mixed Mode(I+II) with variation of Crack Length (혼합모드(I+II)하에서 균열길이 변화에 따른 피로균열 전파 거동)

  • Jeong, Eui-Hyo;Hur, Bang-Soo;Kwon, Yun-Ki;Oh, Taek-Yul
    • Proceedings of the KSME Conference
    • /
    • 2000.04a
    • /
    • pp.182-187
    • /
    • 2000
  • The application of fracture mechanics have traditionally concentrated on cracks leaded by tensile stresses, and growing under an opening or mode I mechanism. However, many cases of failures occur from growth of cracks subjected to mixed mode loading. Several criteria have been proposed regarding the crack growth direction under mixed mode loadings. This paper is aimed at prediction of fatigue crack growth behaviour under mixed mode(I+II) in two dimensional branched type precrack. In this paper, the maximum tangential stress(MTS) criterion was used to predict crack growth direction. Not only experiment but also finite element analysis(FEA) was carried out. The theoretical predictions were compared with experimental results in this paper

  • PDF

Fatigue crack propagation of buried pipe steel under mixed model loading (혼합모드하중을 받는 매석배관강의 피로균열전파 거동)

  • 이억섭;최용길
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.473-476
    • /
    • 2000
  • Recently, many studies focus on mixed-mode fatigue-fracture characteristics of characteristics of materials. In order to reveal crack initiation and propagation mechanisms in combined -mode fatigue. This paper investigates the initiation and propagation behavior of the fatigue crack of the STS304 specimens under mixed mode loading conditions. moreover crack arrest and branch phenomena were analyzed with respect to the change do the angle of inclined loading. The relationship between the angle of inclined loading and the angle of branched crack was studied. A greate number of cycles are necessary to initiate a new crack from the initial crack. The direction of the new crack propagation is determined by MTS theory.

  • PDF

Stress Intensity Factors for Branched Edge Cracks (가지친 표면크랙의 응력확대계수)

  • 구인회
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.10 no.2
    • /
    • pp.257-264
    • /
    • 1986
  • 무한평판에 묻혀진 크랙에 대한 응력확대계수를 결정하는 전위분포법을 반무한 평판에서의 표면크랙에 확장 적용하였다. 이를 위해 반평면에서의 전위응력의 기본 해가 간단한 복소수 응력함수형태로 얻어졌다. 평형을 이루는 절편적인 분포로부터 응력확대의 계수를 계산하는 새로운 방식을 제안하였으며, 수직표면 크랙과 묻혀진 경사크랙에 대한 기존해와 이 방법의 결과가 상호 비교되었다. 경사진 표면크랙에 대한 계산결과는 유한평판에서의 기존하는 Mapping Collocation 해석과 비교되어 좋은 일치를 보여 주었다. 구부러진 크랙과 대칭으로 가지친 크랙에 대해서는 표면크랙과 묻혀진 크랙사이에 상당한 차이가 있음이 나타났다.

A Study on Fatigue Crack Growth Retardation Phenomena of Al 7075--T6 Alloy under Multiple overload(I) (다중 과하중에 의한 A1 7075-T6 합금의 피로균열 성장지연현상에 관한 연구)

  • 이택순;이유태
    • Journal of Ocean Engineering and Technology
    • /
    • v.6 no.1
    • /
    • pp.96-104
    • /
    • 1992
  • Aircraft structures and engineering structures are always subject to variable amplitude loads. Variable amplitude loads include some kind of loading history; for example, constant amplitude load, single peak overload and block overload etc. Crack growth under variable amplitude loading exhibits retardation effect. In this study, the 4 point bending fatigue test was performed by hydrolic servo fatigue testing machine on 7075-T6 Al-alloy. The retardation effect of overload ratio and numbers of overload cycle was quantitatively studied. 1) Change of retardation effect against increment of overload ratio is more evident when the multiple overload is applied than single overload is done. 2) The number of overload cycle is very important factor about the crack growth retardation effect when the overload ratio is more than 1.75; that is not when the overload ratio is less than 1.75. 3) Overload affected zone size increased gradually by increment of crack growth retardation effect. 4) Crack driving force is more greatly reduced when the crack tip branched off two direction than it sloped to one direction.

  • PDF

Crack Initiation and Propagation at the Gas Turbine Blade with Antioxidation and Thermal Barrier Coating (내산화 및 열차폐 코팅처리 가스터빈 블레이드의 균열거동)

  • Kang, Myung-Soo;Kim, Jun-Sung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.12
    • /
    • pp.99-106
    • /
    • 2010
  • Gas turbines operation for power generation increased rapidly since 1990 due to the high efficiency in combined cycle, relatively low construction cost and low emission. But the operation and maintenance cost for gas turbine is high because the expensive superalloy hot gas path parts should be repaired and replaced periodically This study analyzed the initiation and propagation of the crack at the gas turbine blades which are coated with MCrAIY as a bond coat and TBC as a top coat. The sample blades had been serviced at the actual gas turbines for power generation. Total 7 sets of blades were analyzed and they have different EOH(equivalent operation hour). Blades were sectioned and the cracking distribution were measured and analyzed utilizing SEM(scanning electron microscope) and optical microscope. The blades which had 52,000 EOH of operation had cracks at the substrate and the maximum depth was 0.2 mm. Most of the cracks initiated at the boundary layer between TBC and bond coat and propagated down to the bond coat. Once bond coat is cracked, the base metal is exposed to the oxidation condition and undergoes notch effect. Under this environment, the crack branched at the inter-diffusion layer and propagated to the substrate. Critical cracks affecting the blade life were analyzed as those on suction side and platform.

Stress Corrosion Cracking of Heat Exchanger Tubes in District Heating System

  • Cho, Sangwon;Kim, Seon-Hong;Kim, Woo-Cheol;Kim, Jung-Gu
    • Corrosion Science and Technology
    • /
    • v.18 no.2
    • /
    • pp.49-54
    • /
    • 2019
  • The purpose of this paper is to present failure analysis, of the heat exchanger tube in a district heating system. SS304 stainless steel is used, as material for the heat exchanger tube. The heat exchanger operates in a soft water environment containing a small amount of chloride ions, and regularly repeats operation and standstill period. This causes concentration of chloride ions on the outer surface of the tube, as well as repeat of thermal expansion, and shrinkage of the tube. As a result of microscopic examination, cracks showed transgranular as well as branched propagation, and many pits were present, at the initiation point of each crack. Energy disperstive spectroscopy analysis showed Fe and O peak, as well as Cl peak, meaning that cracks were affected by Cl ion. Failure of the tube was caused by chloride-induced stress corrosion cracking by thermal stress, high temperature, and localized enrichment of chloride ions.