• Title/Summary/Keyword: breast magnetic resonance image

Search Result 21, Processing Time 0.031 seconds

Breast Magnetic Resonance Image (MRI) Guideline: Breast Imaging Study Group of Korean Society of Magnetic Resonance in Medicine Recommendations

  • Choi, Seon Hyeong;Kang, Bong Joo;Jung, Seung Eun
    • Investigative Magnetic Resonance Imaging
    • /
    • v.22 no.4
    • /
    • pp.205-208
    • /
    • 2018
  • The purpose of this study is to establish an appropriate protocol for breast magnetic resonance imaging (MRI) in the discipline of image quality standards. The intention of the protocol is to increase effectiveness of medical image information exchange involved in construction, activation, and exchange of clinical information for healthcare.

The Utility Evaluation of Reconstructed 3-D Images by Maximum Intensity Projection in Magnetic Resonance Mammography and Cholangiopancreatography

  • Cho, Jae-Hwan;Lee, Hae-Kag;Park, Cheol-Soo;Kim, Ham-Gyum;Baek, Jong-Geun;Kim, Eng-Chan
    • Journal of Magnetics
    • /
    • v.19 no.4
    • /
    • pp.365-371
    • /
    • 2014
  • The aim of this study was to evaluate the utility of 3-D images by comparing and analyzing reconstructed 3-D images from fast spin echo images of MRI cholangiopancreatography (MRCP) images using maximum intensity projection (MIP) with the subtraction images derived from dynamic tests of magnetic resonance mammography. The study targeted 20 patients histologically diagnosed with pancreaticobiliary duct disease and 20 patients showing pancreaticobiliary duct diseases, where dynamic breast MR (magnetic resonance) images, fast spin echo imaged of pancreaticobiliary duct, and 3-D reconstitution images using a 1.5T MR scanner and 3.0T MR scanner were taken. As a result of the study, the signal-to-noise ratio in the subtracted breast image before and after administering the contrast agent and in the reconstructed 3-D breast image showed a high ratio in the reconstructed image of lesional tissue, relevant tissue, and fat tissue. However, no statistically meaningful differences were found in the contrast-to-noise ratio of the two images. In the case of the MRCP image, no differences were found in the ratios of the fast spin echo image and reconstructed 3-D image.

Acquisition and Interpretation Guidelines of Breast Diffusion-Weighted MRI (DW-MRI): Breast Imaging Study Group of Korean Society of Magnetic Resonance in Medicine Recommendations

  • Kang, Bong Joo;Kim, Min Jung;Shin, Hee Jung;Moon, Woo Kyung
    • Investigative Magnetic Resonance Imaging
    • /
    • v.26 no.2
    • /
    • pp.83-95
    • /
    • 2022
  • The purpose of this study was to establish and provide guidelines for the standardized acquisition and interpretation of diffusion-weighted magnetic resonance imaging (DW-MRI) to improve the image quality and reduce the variability of the results interpretation. The standardized protocol includes the use of high-resolution DW-MRI with advanced techniques and post-processing. The aim of the protocol is to increase the effectiveness of the medical image information exchange involved in the construction, activation, and exchange of clinical information for healthcare use. An organized interpretation form could make DW-MRIs' interpretation easier and more familiar. Herein, the authors briefly review the basic principles, optimized image acquisition, standardized interpretation guidelines, false negative and false positive cases of DW-MRI, and provide a standard interpretation form and examples of various cases to help users become more familiar with the DW-MRI.

Primary Angiosarcoma of the Breast: MRI Findings

  • Lee, Kanghun;Seo, Kyung Jin;Whang, In Yong
    • Investigative Magnetic Resonance Imaging
    • /
    • v.22 no.3
    • /
    • pp.194-199
    • /
    • 2018
  • We present image findings, especially rare MRI of a primary breast angiosarcoma with its histopathology, and also analyze the relevant medical literature reports in terms of the MRI findings. As our patient had unique features of a primary breast angiosarcoma, this case could be very helpful for future diagnosis of this rare breast malignancy by MRI.

Prior to Breast MRI Guidelines in Korea, Where Were We?

  • Hwang, Cheong Hoon;Rho, Miribi;Lee, Minah;Kim, Ga Ram;Park, Vivian Youngjean;Yoon, Jung Hyun;Kim, Min Jung
    • Investigative Magnetic Resonance Imaging
    • /
    • v.25 no.1
    • /
    • pp.35-42
    • /
    • 2021
  • Purpose: To evaluate and analyze the adequacy of breast magnetic resonance imaging (MRI)s taken before publication of the 2018 recommendation in South Korea. Materials and Methods: We enrolled 87 cases of breast MRIs, from January 2010 to November 2013, taken at external hospitals in the study. Breast MRI protocol elements are divided into three categories based on the recommendation by the Breast Imaging Study Group of the Korean Society of Magnetic Resonance: (1) Essential elements for breast MRI protocol; (2) Element to consider when evaluating imaging quality; and (3) Optional element for breast MRI protocol. Also, we divided enrolled cases into three groups based on their conducting locations -- (1) Primary hospitals, (2) Secondary hospitals, and (3) Tertiary hospitals-and analyzed them for the adequacy of imaging protocols based on the 2018 recommendation. We used a Chi-square test and Fisher's exact test to identify differences between categorical variables. Results: Over 98% of the criteria for 'essential elements for breast MRI protocol' were satisfied when compared with the 2018 Recommendation. Over 96% of the criteria for 'elements to consider when evaluating imaging quality' were also satisfied, except for the slice thickness (83.9%). Optional elements for breast MRI protocol were satisfied with various percentages. There were no statistically significant differences between groups of tertiary, secondary, and primary hospitals; however, 3 tesla of MRI (P = 0.04), subtraction image protocol (P = 0.032), and DWI protocol (P = 0.03) were used more frequently in the tertiary hospitals than in the others. Conclusion: We found that the categories of 'essential elements' and 'elements to consider when evaluating imaging quality' were satisfied at 98% and 96%, respectively, when compared with the 2018 Recommendation by the Breast Imaging Study Group of the Korean Society of Magnetic Resonance.

Algorithm Study for Diagnosis the Breast Cancer Using LMA and FDTD (LMA와 FDTD를 이용한 유방암 진단용 알고리즘 연구)

  • Seo, Min-Gyeong;Kim, Tae-Hong;Mun, Ji-Yeon;Jeon, Soon-Ik;Pack, Jeong-Ki
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.22 no.12
    • /
    • pp.1124-1131
    • /
    • 2011
  • In this paper, image reconstruction algorithm for breast cancer detection using MT(Microwave Tomography) was investigated. The breast cancer detection system under development uses 16 transmit/receive antennas. The signal waveform was a sinusoidal wave at 900 MHz. To solve the 2D inverse scattering problem, we used the 2D FDTD (Finite Difference Time Domain) method for forward calculation and LMA(Levenberg-Marquardt Algorithm) for optimization. The result of the image reconstruction using the numerical phantom by MRI(Magnetic Resonance Imaging) obtained from real patient of breast cancer showed that we can detect the position of the tumor accurately.

MR Findings of Papillary Neoplasms of the Breast (유두 종양의 자기공명 영상소견)

  • Jo, Yeseul;Kim, Sung Hun;Kang, Bong Joo;Choi, Byung Gil
    • Investigative Magnetic Resonance Imaging
    • /
    • v.18 no.1
    • /
    • pp.43-51
    • /
    • 2014
  • Purpose : To review MR imaging finding of papillary lesion identified as additional suspicious lesion on MR image in women with biopsy-proven breast cancer and to evaluate upgrading rates after subsequent surgical histopathological diagnosis. Materials and Methods: Among 1729 preoperative MR image of women with biopsy proven breast cancer, US-guided CNB-proven 22 papillary lesions from 21 patients, which showed additional suspicious contrast enhancement other than index cancer on MR image, were subjected to the study. Some of these lesions underwent surgery, thus the comparisons between the histopathologic results were able to be compared to the results of US-guided CNB. Also retrospective analysis was done for MR findings of these lesions by BI-RADS MRI lexicon. Results: On MR imaging, 8 mass lesions, 7 non-mass lesions, 7 focus lesions were detected. All of the focus lesion (100%, 7/7) was diagnosed as benign lesion and showed plateau and washout pattern in dynamic MR image. After excisional biopsy, one of 9 benign papilloma (11.1%), 3 of 3 papillary neoplasm with atypia component (100%), 3 of 5 papillary neoplasm (60%) were upgraded to malignancy such as ductal carcinoma in situ (DCIS), invasive ductal carcinoma (IDC), invasive lobular carcinoma (ILC). Conclusion: The MR images of papillary lesions diagnosed by US-guided CNB exhibit no significant differences between malignancy and benign lesion. Also 41.2% of the lesion (7/17) was upgraded after subsequent surgery. Thus all of the papillary lesions require excisional biopsy for definite diagnosis and the MR imaging, it's just not enough by itself.

Chest Wall Lipogranuloma after Hydrogel Implant Rupture: Case Report

  • Park, So Yoon;Han, Boo-Kyung;Cho, Eun Yoon;Bang, Sa-Ik
    • Investigative Magnetic Resonance Imaging
    • /
    • v.19 no.3
    • /
    • pp.191-195
    • /
    • 2015
  • We present a 53-year-old woman with a large chest wall mass in the interpectoral space, which was eventually confirmed as a lipogranuloma resulting from hydrogel implant rupture. Ultrasonography (US) showed reduced implant volume with surrounding peri-implant fluid collection, suggesting the possibility of implant rupture. A heterogeneously hypoechoic mass was found between the pectoralis major and minor muscles adjacent to the ruptured implant. On magnetic resonance imaging (MRI), there was a large mass in the left interpectoral space of the upper inner chest wall. The mass showed slightly high signal intensity (SI) on pre-contrast T1-weighted image (WI) with mixed iso and high SI on T2-WI. The signal of the mass was suppressed using the water suppression technique but not with the fat suppression technique on T2-WI. The mass showed diffuse enhancement upon contrast enhancement. The enhancing kinetics showed persistent enhancement pattern. US-guided core needle biopsy revealed a lipogranuloma and removal confirmed a ruptured PIP hydrogel implant.

Electrical Impedance Tomography and Biomedical Applications

  • Woo, Eung-Je
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.1-6
    • /
    • 2007
  • Two impedance imaging systems of multi-frequency electrical impedance tomography (MFEIT) and magnetic resonance electrical impedance tomography (MREIT) are described. MFEIT utilizes boundary measurements of current-voltage data at multiple frequencies to reconstruct cross-sectional images of a complex conductivity distribution (${\sigma}+i{\omega}{\varepsilon}$) inside the human body. The inverse problem in MFEIT is ill-posed due to the nonlinearity and low sensitivity between the boundary measurement and the complex conductivity. In MFEIT, we therefore focus on time- and frequency-difference imaging with a low spatial resolution and high temporal resolution. Multi-frequency time- and frequency-difference images in the frequency range of 10 Hz to 500 kHz are presented. In MREIT, we use an MRI scanner to measure an internal distribution of induced magnetic flux density subject to an injection current. This internal information enables us to reconstruct cross-sectional images of an internal conductivity distribution with a high spatial resolution. Conductivity image of a postmortem canine brain is presented and it shows a clear contrast between gray and white matters. Clinical applications for imaging the brain, breast, thorax, abdomen, and others are briefly discussed.

  • PDF

Preliminary Application of Synthetic Computed Tomography Image Generation from Magnetic Resonance Image Using Deep-Learning in Breast Cancer Patients

  • Jeon, Wan;An, Hyun Joon;Kim, Jung-in;Park, Jong Min;Kim, Hyoungnyoun;Shin, Kyung Hwan;Chie, Eui Kyu
    • Journal of Radiation Protection and Research
    • /
    • v.44 no.4
    • /
    • pp.149-155
    • /
    • 2019
  • Background: Magnetic resonance (MR) image guided radiation therapy system, enables real time MR guided radiotherapy (RT) without additional radiation exposure to patients during treatment. However, MR image lacks electron density information required for dose calculation. Image fusion algorithm with deformable registration between MR and computed tomography (CT) was developed to solve this issue. However, delivered dose may be different due to volumetric changes during image registration process. In this respect, synthetic CT generated from the MR image would provide more accurate information required for the real time RT. Materials and Methods: We analyzed 1,209 MR images from 16 patients who underwent MR guided RT. Structures were divided into five tissue types, air, lung, fat, soft tissue and bone, according to the Hounsfield unit of deformed CT. Using the deep learning model (U-NET model), synthetic CT images were generated from the MR images acquired during RT. This synthetic CT images were compared to deformed CT generated using the deformable registration. Pixel-to-pixel match was conducted to compare the synthetic and deformed CT images. Results and Discussion: In two test image sets, average pixel match rate per section was more than 70% (67.9 to 80.3% and 60.1 to 79%; synthetic CT pixel/deformed planning CT pixel) and the average pixel match rate in the entire patient image set was 69.8%. Conclusion: The synthetic CT generated from the MR images were comparable to deformed CT, suggesting possible use for real time RT. Deep learning model may further improve match rate of synthetic CT with larger MR imaging data.