• Title/Summary/Keyword: bremsstrahlung

Search Result 38, Processing Time 0.029 seconds

Effects of collimator on imaging performance of Yttrium-90 Bremsstrahlung photons: Monte Carlo simulation

  • Kim, Minho;Bae, Jae Keon;Hong, Bong Hwan;Kim, Kyeong Min;Lee, Wonho
    • Nuclear Engineering and Technology
    • /
    • v.51 no.2
    • /
    • pp.539-545
    • /
    • 2019
  • Yttrium-90 is a useful therapeutic radioisotope for tumor treatment because of its high-energy-emitting beta rays. However, it has been difficult to select appropriate collimators and main energy windows for Y-90 Bremsstrahlung imaging using gamma cameras because of the broad energy spectra of Y-90. We used a Monte Carlo simulation to investigate the effects of collimator selection and energy windows on Y-90 Bremsstrahlung imaging. We considered both MELP and HE collimators. Various phantoms were employed in the simulation to determine the main energy window using primary-to-scatter ratios (PSRs). Imaging performance was evaluated using spatial resolution indices, imaging counts, scatter fractions, and contrast-to-noise ratios. Collimator choice slightly affected energy spectrum shapes and improved PSRs. The HE collimator performed better than the MELP collimator on all imaging performance indices (except for imaging count). We observed minor differences in SR and SF values for the HE collimator among the five simulated energy windows. The combination of an HE collimator and improved-PSR energy window produced the best CNR value. In conclusion, appropriate collimator selection is an important component of Bremsstrahlung Y-90 photon imaging and main energy window determination. We found HE collimators to be more appropriate for improving the imaging performance of Bremsstrahlung Y-90 photons.

Modelling atomic relaxation and bremsstrahlung in the deterministic code STREAM

  • Nhan Nguyen Trong Mai;Kyeongwon Kim;Deokjung Lee
    • Nuclear Engineering and Technology
    • /
    • v.56 no.2
    • /
    • pp.673-684
    • /
    • 2024
  • STREAM, developed by the Computational Reactor Physics and Experiment laboratory (CORE) of the Ulsan National Institute of Science and Technology (UNIST), is a deterministic neutron- and photon-transport code primarily designed for light water reactor (LWR) analysis. Initially, the photon module in STREAM did not account for fluorescence and bremsstrahlung photons. This article presents recent developments regarding the integration of atomic relaxation and bremsstrahlung models into the existing photon module, thus allowing for the transport of secondary photons. The photon flux and photon heating computed with the newly incorporated models is compared to results obtained with the Monte Carlo code MCS. The incorporation of secondary photons has substantially improved the accuracy of photon flux calculations, particularly in scenarios involving strong gamma emitters. However, it is essential to note that despite the consideration of secondary photon sources, there is no noticeable improvement in the photon heating for LWR problems when compared to the photon heating obtained with the previous version of STREAM.

Development of shielding device for bremsstrahlung radiation from Y-90 microspheres (Y-90 microsphere 로부터 생성되는 제동복사선의 차폐를 위한 차폐체 개발 연구)

  • Park, Jun Young
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.23 no.1
    • /
    • pp.50-53
    • /
    • 2019
  • Purpose Yttrium-90 (Y-90) is high-energy beta emitters ($E{\beta}$, max = 2.28 MeV) with the mean penetration depth of 2.5 mm in tissue. Radioactive microspheres containing Y-90 is widely used for the transarterial radioembolization of hepatocellular carcinoma. However, bremsstrahlung radiation from Y-90 can cause the external radiation exposure to medical staff who handle the Y-90 microspheres. In this study, shielding device for Y-90 microspheres was developed to minimize the external radiation exposure. Materials and Methods Y-90 microsphere shielding device was made from 6 mm thicknesses of tungsten including the lead glass window. Radiation shielding ability of Y-90 microsphere shielding device was evaluated using 4 GBq of $SIR-Spheres^{(R)}$ Y-90 microspheres. The bremsstrahlung radiation was measured using radiation survey meter. Results The mean radiation dose of Y-90 microspheres in acrylic shield was $261.7{\pm}2.3{\mu}Sv/h$ (n=5) at 10 cm away from the shield. With the additional tungsten shielding device, it was $23.7{\pm}1.3{\mu}Sv/h$ (n=5). Thus, the bremsstrahlung radiation dose was decreased by 90.9%. At 50 cm away from the shield, bremsstrahlung radiation was reduced by 89.2% after using tungsten shielding device. Conclusion During the preparation and radioembolization of Y-90 microsphere, medical staff are exposed to external radiation. In this study, we demonstrated that the use of tungsten shielding device devices significantly reduced the amount of bremsstrahlung radiation. Y-90 microsphere tungsten shielding device can be highly effective in reducing the bremsstrahlung radiation.

Measurement of Bremsstrahlung Radiation with Electron Beam Energy

  • Srivastava, R.P.;Chaurasia, P.P.;Prasiko, G.;Jha, A.K.
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2002.09a
    • /
    • pp.235-236
    • /
    • 2002
  • A Klystron powered dual photon energy electron linear accelerator 2300 C/D from Varian Associates has been installed in our center. From the radiological safety view as well as treatment planning, the output (contamination) of Bremsstrahlung Radiation with electron beam energy determined accurately. It has been found 0.5% to 4.7% with increasing the electron beam energy which is the clinically not much significant in the treatment of the malignant diseases with the treatment of electron beam.

  • PDF

Numerical optimization of transmission bremsstrahlung target for intense pulsed electron beam

  • Yu, Xiao;Shen, Jie;Zhang, Shijian;Zhang, Jie;Zhang, Nan;Egorov, Ivan Sergeevich;Yan, Sha;Tan, Chang;Remnev, Gennady Efimovich;Le, Xiaoyun
    • Nuclear Engineering and Technology
    • /
    • v.54 no.2
    • /
    • pp.666-673
    • /
    • 2022
  • The optimization of a transmission type bremsstrahlung conversion target was carried out with Monte Carlo code FLUKA for intense pulsed electron beams with electron energy of several hundred keV for maximum photon fluence. The photon emission intensity from electrons with energy ranging from 300 keV to 1 MeV on tungsten, tantalum and molybdenum targets was calculated with varied target thicknesses. The research revealed that higher target material element number and electron energy leads to increased photon fluence. For a certain target material, the target thickness with maximum photon emission fluence exhibits a linear relationship with the electron energy. With certain electron energy and target material, the thickness of the target plays a dominant role in increasing the transmission photon intensity, with small target thickness the photon flux is largely restricted by low energy loss of electrons for photon generation while thick targets may impose extra absorption for the generated photons. The spatial distribution of bremsstrahlung photon density was analyzed and the optimal target thicknesses for maximum bremsstrahlung photon fluence were derived versus electron energy on three target materials for a quick determination of optimal target design.

Real-time monitoring of ultra-high dose rate electron beams using bremsstrahlung photons

  • Hyun Kim;Dong Hyeok Jeong;Sang Koo Kang;Manwoo Lee;Heuijin Lim;Sang Jin Lee;Kyoung Won Jang
    • Nuclear Engineering and Technology
    • /
    • v.55 no.9
    • /
    • pp.3417-3422
    • /
    • 2023
  • Recently, as the clinically positive biological effects of ultra-high dose rate (UHDR) radiation beams have been revealed, interest in flash radiation therapy has increased. Generally, FLASH preclinical experiments are performed using UHDR electron beams generated by linear accelerators. Real-time monitoring of UHDR beams is required to deliver the correct dose to a sample. However, it is difficult to use typical transmission-type ionization chambers for primary beam monitoring because there is no suitable electrometer capable of reading high pulsed currents, and collection efficiency is drastically reduced in pulsed radiation beams with ultra-high doses. In this study, a monitoring method using bremsstrahlung photons generated by irradiation devices and a water phantom was proposed. Charges collected in an ionization chamber located at the back of a water phantom were analyzed using the bremsstrahlung tail on electron depth dose curves obtained using radiochromic films. The dose conversion factor for converting a monitored charge into a delivered dose was determined analytically for the Advanced Markus® chamber and compared with experimentally determined values. It is anticipated that the method proposed in this study can be useful for monitoring sample doses in UHDR electron beam irradiation.

The emission spectrum from isolated black holes

  • Gwon, Sun-Ja;Park, Myeong-Gu
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.40 no.1
    • /
    • pp.86.3-86.3
    • /
    • 2015
  • There could be significant numbers of isolated stellar mass black holes in our Galaxy. The detection of these black holes will provide important clues on the origin of supermassive black holes. Interstellar gas will be accreted to these isolated black holes in nearly spherical flow. The gas and the interstellar magnetic field will be compressed and emit bremsstrahlung and magnetic bremsstrahlung. We calculate the density, temperature, magnetic field of the accretion flow onto a 10 solar mass black hole as well as its radiative emission; special attention is given to cyclotron radiation and synchrotron radiation, which covers from microwave to X-ray. We consider the possibility to detect these radiation from isolated Galactic black holes with current instruments and surveys.

  • PDF

Bubble Behavior and Radiation for Laser-Induced Collapsing Bubble in Water (물 속에서 레이저에 의하여 생성된 기포의 거동 및 복사현상)

  • Karng, Sarng-Woo;Byun, Ki-Taek;Kwak, Ho-Young
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.1282-1287
    • /
    • 2004
  • The bubble behavior and the radiation mechanism from a laser-induced collapsing bubble were investigated theoretically using the Keller-Miksis equation for the bubble wall motion and analytical solutions for the vapor inside bubble. The calculated time dependent bubble radius is in good agreement with observed ones. The half-width of the luminescence pulse at the collapse point, which was calculated under assumption that the light emission mechanism is black body radiation from the vapor bubble agreed well with observed value of several nanoseconds. The gas content inside the vapor bubble was too small to produce the light emission due to bremsstrahlung.

  • PDF