• Title/Summary/Keyword: brittle intergranular fracture

Search Result 18, Processing Time 0.029 seconds

Influence of pH in 3.5% NaCl aqueous solution on corrosion fatigue-fracture of dual phase steel (3.5% NaCl 수용액의 pH변화가 복합조직강의 부식피로파괴에 미치는 영향)

  • 오세욱;안호민;도영문
    • Journal of Ocean Engineering and Technology
    • /
    • v.1 no.2
    • /
    • pp.123-129
    • /
    • 1987
  • Corrosion fatigue fracture of dual phase steel(SS41) and raw material steel(SS41) were investigated in 3.5% NaCl aqueous solution at PH 4,6,9 and 11. The fatigue limit of dual phase steel is increased approximately 1.8 times larger than that of raw material in air. The corrosion fatigue life of dual phase steel is about 5-10 times larger than that of raw material in 3.5% NaCl aqueous solution. The reduction of fatigue life is larger for the acidsalt solution than for the alkali salt solution. The reduction of stress level on the reduction ratio of corrosion fatigue life is large as pH 6-11. The reduction ratio of corrosion fatigue life of dual phase steel and raw material is nearly coincided at pH 2. While at pH4-2 the reduction ratio of corrosion fatigue life only depends on the corrosion effect. It has been found that the corrosion resistance effect of dual phase steel is smaller than that of raw material in corrosion fatigue crack propagation rate. As pH below 6 is changed, it can be clearly observed from raw material that the brittle intergranular fracture is characterized, and from the above result, the influence of corrosion of dual phase steel is small.

  • PDF

Effect of Interstitial Elements on Ductile-Brittle Transition Behavior of Austenitic Fe-18Cr-10Mn-2Ni Alloys (오스테나이트계 Fe-18Cr-10Mn-2Ni 합금의 연성-취성 천이 거동에 미치는 침입형 원소의 영향)

  • Hwang, Byoungchul
    • Korean Journal of Materials Research
    • /
    • v.23 no.11
    • /
    • pp.649-654
    • /
    • 2013
  • The effect of interstitial elements on the ductile-brittle transition behavior of austenitic Fe-18Cr-10Mn-2Ni alloys with different nitrogen and carbon contents was investigated in this study. All the alloys exhibited ductile-brittle transition behavior because of unusual low-temperature brittle fracture, even though they have a faced-centered cubic structure. With the same interstitial content, the combined addition of nitrogen and carbon, compared to the sole addition of nitrogen, improved the low-temperature toughness and thus decreased the ductile-brittle transition temperature (DBTT) because this combined addition effectively enhances the metallic component of the interatomic bonds and is accompanied by good plasticity and toughness due to the increased free electron concentration. The increase in carbon content or of the carbon-to-nitrogen ratio, however, could increase the DBTT since either of these causes the occurrence of intergranular fracture that lead to the deterioration of the toughness at low temperatures. The secondary ion mass spectroscopy analysis results for the observation of carbon and nitrogen distributions confirms that the carbon and nitrogen atoms were significantly segregated to the austenite grain boundaries and then caused grain boundary embrittlement. In order to successfully develop austenitic Fe-Cr-Mn alloys for low-temperature application, therefore, more systematic study is required to determine the optimum content and ratio of carbon and nitrogen in terms of free electron concentration and grain boundary embrittlement.

Ductile-to-Brittle Transition Behavior of Two Austenitic Fe-18Cr-10Mn Alloys with the Combined Addition of Nitrogen and Carbon (질소와 탄소가 복합 첨가된 두 오스테나이트계 Fe-18Cr-10Mn 합금의 연성-취성 천이 거동)

  • Lee, S.Y.;Kim, B.Y.;Hwang, B.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.28 no.1
    • /
    • pp.1-6
    • /
    • 2015
  • The ductile-to-brittle transition behavior of two austenitic Fe-18Cr-10Mn alloys with the combined addition of nitrogen and carbon was investigated in this study. The alloys exhibited a ductile-to-brittle transition behavior because of unusual brittle fracture at low temperatures unlike conventional austenitic alloys. The alloy with higher carbon content had higher yield and tensile strengths than that with lower carbon content due to the solid solution strengthening effect resulting from carbon addition. However, the increase in carbon content promoted the occurrence of intergranular fracture, and thus deteriorated the impact toughness. In order to develop successfully the austenitic Fe-18Cr-10Mn alloys with the excellent combination of strength and toughness in the future, therefore, more systematic studies are required to find the appropriate amount and ratio of nitrogen and carbon.

HIP Consolidation and Effect of Process Variables on Micristructure for Ren$\'{e}$ 95 Superalloy Powders (Ren$\'{e}$ 95 초내영 합금 분말을 이용한 열간 정수압 성형 및 성형 조건에 따른 미세조직 변화)

  • 표성규
    • Journal of Powder Materials
    • /
    • v.6 no.2
    • /
    • pp.152-162
    • /
    • 1999
  • The present study is concerned with the effect of PM process variables on the microstructure by using atomized superalloy powders. It is suggested that the inhomogeneity of composition is strongly dependent on the process variables. The contents of segregation elements of plasma rotating electrode process (PREP) powders are larger than those of Ar atomization (AA) powders. As HIP treatment temperature in-increases, the secondary phases on the prior particle boundaries (PPB) have continuous,uniform distribution and high density, but the amount of PPB decreases suddenly at 1150$^{\circ}$C. Segregated phases on the PPB are identified to be MC type carbide. Brittle MC type carbides on the PPB provide fracture initiation sites and preferred fracture path, thereby leading to intergranular type brittle fracture.

  • PDF

The Failure Analysis of Boiler Tube for High Temperature and High Pressure Service (고온고압용 보일러 튜브의 파손 원인분석)

  • Lee, Jong-Hun;Yu, Wi-Do
    • 연구논문집
    • /
    • s.30
    • /
    • pp.121-128
    • /
    • 2000
  • The failed tube received for this study has been used for approximately 10 year at $330^{\circ}C$ in a steam production boiler tube was fractured in the transversed direction to tube length, and fracture mode was typically intergranulas type without the plastic deformation. The fracture surface was covered by the oxide scale formed from the intermal high pressure steam at high temperature. The microstructure was not nearly thermal-degraded during the service. From this result, we can conclude that the oxide film was proferentialy formed into the grainboundary and this grainboundary oxide film was brittle-fractured by the thermal stress in the longitudinal direction to the tube brittle intergranular fracture mode.

  • PDF

The Case Study on Cadmium Embrittlement Failure of High Strength Bolt (고강도 볼트 카드늄 취성파괴 사례연구)

  • Yoon, Young-In
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.13 no.5
    • /
    • pp.769-774
    • /
    • 2010
  • It happened fractures on special bolt which supported main landing gear actuator up-lock rod of aircraft. Cracks were initiated mainly from the center hole and the external thread of the special bolt. To find out failure root causes, metallographic, fractographic analyses as well as test work were carried out. From the fractographic study by SEM work, fracture occurred by a brittle intergranular type failure. The fracture could be occurred primarily by solid-metal-induced embrittlement due to cadmium embrittler penetrated into the flaw existed after machining work for center hole and thread on the bolt during baking treatment processing to eliminate hydrogen. For its successful application, cadmium EP bolts require proper and adequate baking treatment after electroplating, and make no more drilled center hole on the bolt to prevent same failure.

Effect of Sn Addition on the SCC Properties of Al-Cu-Mn Cast Alloy (Al-Cu-Mn 주조합금의 SCC 특성에 미치는 Sn 첨가의 영향)

  • Kim, Kwang-Nyeon;Kim, Kyung-Hyun;Kim, In-Bae
    • Korean Journal of Materials Research
    • /
    • v.12 no.6
    • /
    • pp.436-441
    • /
    • 2002
  • Effect of Sn addition on the stress corrosion cracking(SCC) resistance of the Al-Cu-Mn cast alley was investigated by C-ring teat and electrical conductivity measurement, The electrical conductivity and SCC resistance increased by Sn addition. The alley containing 0,10%Sn showed maximum electrical conductivity and the best SCC resistance. At the same composition, the electrical conductivity and SCC resistance increased from peak aged condition to ever aged condition. The PFZ and coarse precipitates along the grain boundary were observed from TEM micrographs. The fracture mode of the alloy was confirmed as intergranular type and showed brittle fracture surface. The SCC mechanism of the alloy was concluded as the anodic dissolution model, The maximum hardness was increased from 130Hv in the Sn-free alloy to 156Hv in the 0.10%Sn added alloy.

Effect of Cd Addition on the SCC Properties of Al-Cu-Mn Cast Alloys (Al-Cu-Mn주조합금의 SCC특성에 미치는 Cd첨가의 영향)

  • Lee, Chan-Hui;Kim, Gyeong-Hyeon;Kim, In-Bae
    • Korean Journal of Materials Research
    • /
    • v.11 no.4
    • /
    • pp.266-271
    • /
    • 2001
  • Effect of Cd addition on the stress corrosion cracking(SCC) resistance of Al-Cu-Mn cast alloy was investigated by C-ring test and electrical conductivity measurement. With increasing Cd contents, the electrical conductivity and the SCC resistance were increased. The PFZ and coarse precipitates along the grain boundary were observed from TEM micrographs. The fracture made of the alloys was confirmed as intergranular type and showed brittle fracture surface. As a result, it was concluded that the SCC mechanism of these alloys is the anodic dissolution model. The maximum hardness was increased from 127Hv in the Cd-free alloy to 138∼145Hv in the Cd addition alloys.

  • PDF

The Effect of Shot Peening on the Improvement of Fatigue Strength and Characteristics Fatigue Crack of the Aluminum Alloys (알루미늄 합금의 피로강도향상과 피로특성에 미치는 쇼트피닝 영향)

  • Jeon, Hyun-Bae;Lim, Man-Bae;Park, Won-Jo
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.256-261
    • /
    • 2007
  • The purpose of this study is to investigate the effect of shot peening on the fatigue strength and fatigue life of two kinds of aluminum alloys. The fatigue strength behavior of aluminum alloys were estimated by the stress ratio and shot velocities. The fatigue life and strength increased with increasing the test shot velocity. However, at the shot velocity range between 50m/s and 70m/s, the compressive residual stress phenomena were observed in test conditions of different shot velocity. The optimal shot velocity is acquired by considering the peak values of the compressive residual stress, dislocations, brittle striation, slip, and fisheye on the fracture surface of test specimen. It was observed from the SEM observation on the deformed specimen that the brittle striation, fisheye were showed in the intergranular fracture structure boundaries at the this velocities. Therefore, fatigue strength and fatigue life would be considered that shot velocity has close relationship with the compressive residual stress.

  • PDF

The Effect of Surface Defects on the Cyclic Fatigue Fracture of HEROShaper Ni-Ti rotary files in a Dynamic Model: A Fractographic Analysis (Fractographic 분석을 통한 HEROShaper 니켈티타늄 전동 파일의 피로파절에 미치는 표면결함의 역할)

  • Lee, Jung-Kyu;Kim, Eui-Sung;Kang, Myoung-Whai;Kum, Kee-Yeon
    • Restorative Dentistry and Endodontics
    • /
    • v.32 no.2
    • /
    • pp.130-137
    • /
    • 2007
  • This in vitro study examined the effect of surface defects on cutting blades on the extent of the cyclic fatigue fracture of HEROShaper Ni-Ti rotary files using fractographic analysis of the fractured surfaces. A total of 45 HEROShaper (MicroMega) Ni-Ti rotary flies with a #30/.04 taper were divided into three groups of 15 each. Group 1 contained new HEROShapers without any surface defects. Group 2 contained HEROShapers with manufacturing defects such as metal rollover and machining marks. Croup 3 contained HEROShapers that had been clinically used for the canal preparation of 4-6 molars A fatigue-testing device was designed to allow cyclic tension and compressive stress on the tip of the instrument whilst maintaining similar conditions to those experienced in a clinic. The level of fatigue fracture time was measured using a computer connected the system. Statistical analysis was performed using a Tukey's test. Scanning electron microscopy (SEM) was used for fractographic analysis of the fractured surfaces. The fatigue fracture time between groups 1 and 2, and between groups 1 and 3 was significantly different (p<0.05) but there was no significant difference between groups 2 and 3 (p>0.05). A low magnification SEM views show brittle fracture as the main initial failure mode At higher magnification, the brittle fracture region showed clusters of fatigue striations and a large number of secondary cracks. These fractures typically led to a central region of catastrophic ductile failure. Qualitatively, the ductile fracture region was characterized by the formation of microvoids and dimpling. The fractured surfaces of the HEROShapers in groups 2 and 3 were always associated with pre-existing surface defects. Typically, the fractured surface in the brittle fracture region showed evidence of cleavage (transgranular) facets across the grains, as well as intergranular facets along the grain boundaries. These results show that surface defects on cutting blades of Ni-Ti rotary files might be the preferred sites for the origin of fatigue fracture under experimental conditions. Furthermore this work demonstrates the utility of fractography in evaluating the failure of Ni-Ti rotary flies.