• Title/Summary/Keyword: broken peanut

Search Result 3, Processing Time 0.02 seconds

Effect of Inlet Air Temperature and Atomizing Pressure on Fluidized Bed Coating Efficiency of Broken Peanut (흡입공기온도와 분무압력이 분쇄땅콩의 유동층 코팅효율에 미치는 영향)

  • Kang, Hyun-Ah;Shin, Myung-Gon
    • Korean Journal of Food Science and Technology
    • /
    • v.34 no.5
    • /
    • pp.924-926
    • /
    • 2002
  • The effects of inlet air temperature and atomizing pressure on the coating efficiency were evaluated using peanuts. Broken peanut pieces were coated with dextrin and sodium caseinate solution by a fluidized bed coater. The coating efficiency was significantly influenced by inlet air temperature and atomizing pressure, with the optimal efficiency achieved at $70^{\circ}C$ and 3 bar, respectively. The coating material consisting of dextrin and sodium caseinate could be used for preventing rancidity of broken peanut.

Effects of Dry Roasting on the Vitamin E Content and Microstructure of Peanut (Arachis hypogaea)

  • Eitenmiller, Ronald R;Choi, Sung-Gil;Chun, Jiyeon
    • Journal of agriculture & life science
    • /
    • v.45 no.4
    • /
    • pp.121-133
    • /
    • 2011
  • Effects of roasting on vitamin E content, color, microstructure and moisture of peanuts, and vitamin E content in peanut oils prepared from the roasted peanuts were investigated. Runner-type peanuts were roasted at 140, 150, and $160^{\circ}C$ for 10-20 min. As roasting temperature and time increased, the CIELAB $L^*$ value of peanuts decreased while $a^*$ and $b^*$ values increased, resulting in formation of the golden brown color of roasted peanuts. Moisture ratio (M/Mo) and color $b^*$ value of peanuts roasted at 140 to $160^{\circ}C$ showed a correlation of $b^*=21.61\;(M/Mo)^2-40.62\;(M/Mo)+34.12$ ($R^2=0.9123$). Overall changes in the tocopherol contents of peanuts and peanut oils were significantly affected by roasting temperature and time (p<0.05). Roasting at $140^{\circ}C$ caused a slight increase in the levels of tocopherols of peanuts over roasting time up to 20 min (p<0.05). There was no significant change in the tocopherol levels of peanuts during roasting at $150^{\circ}C$ for 20 min (p>0.05). At $160^{\circ}C$, the levels of tocopherols significantly decreased during the initial 10 min of roasting (p<0.05) while there was no extended loss after 10 min, resulting in about 5, 12, 20, and 10% losses of ${\alpha}$-, ${\beta}$-, ${\gamma}$- and ${\delta}$-T, respectively. After 20 min, total tocopherols decreased by 18%. However, tocopherol contents of pressed peanut oils significantly decreased at all roasting temperatures (p<0.05). After roasting peanuts at $160^{\circ}C$ for 20 min, about 84% of initial ${\alpha}$-T in peanut oils was retained. ${\alpha}$-T was the most stable to roasting while ${\gamma}$-T was the least. Swollen epidermal cells on the inner surface and broken cell walls of parenchyma tissue of peanut cotyledon were observed in peanuts after roasting at $160^{\circ}C$ for 15 min. Severe changes in microstructure of peanut by roasting would contribute to vitamin E stability because of exposure of oil droplets in peanuts to oxygen.

Preparation and Characterization of Electrospun TiO2-Activated Carbon Complex Fiber as Photocatalyst

  • Jung, Min-Jung;Jeong, Eui-Gyung;Jang, Jeen-Seok;Lee, Young-Seak
    • Carbon letters
    • /
    • v.11 no.1
    • /
    • pp.28-33
    • /
    • 2010
  • In this study, $TiO_2$-Activated carbon (AC) complex fibers were prepared by electrospinning for the synergetic effect of adsorption and degradation of organic pollutant. The average diameter of these fibers increased with increasing the amount of AC added, except for 1AC-TOF (AC$/TiO_2$ =1/40 mass ratio). After calcinations at $500^{\circ}C$, long as-spun fibers were broken and their average diameter was slightly decreased. The resultant fibers after calcination had rough surface and sphere shapes like a peanut. From XRD results, it was confirmed that as-spun fibers were changed to anatase $Ti_O2$ fiber after calcinations at $500^{\circ}C$. The prepared $TiO_2$-AC complex fibers could remove procian blue dyes by solar light irradiation with high removal property of 94~99%. The PB dye was rapidly removed by adsorption during the initial 5 minutes. But after 5 minutes, dye removal was occurred by photodegradation. In this study, the most efficient AC/$TiO_2$ ratio of $TiO_2$-AC complex fibers was 5/40, showing the synergetic effect of adsorption and photodegradation. It is expected that the $TiO_2$-AC complex fibers can be used to remove of organic pollutants in water system.