• Title/Summary/Keyword: bubble height

Search Result 49, Processing Time 0.027 seconds

Physics-based height map optimization conveying real-measured flow speed for virtual soap bubble rendering

  • Han, Sol;Yoo, Sangwook;Chin, Seongah
    • International Journal of Advanced Culture Technology
    • /
    • v.8 no.3
    • /
    • pp.284-290
    • /
    • 2020
  • In this paper, we propose a method to generate and optimize the height map that is suitable to render a soap bubble. The height map represents the flow speed of soap bubbles. To this end, we have analyzed the flow of the soap bubble surface through experiment, derived the moving speed value for each section. Some image filters have been used for optimization that reflects the parameters of the derived height map. In addition, in order to verify the results of the study, actual data measuring the surface flow speed of soap bubbles, the speed of the initial height map, and the optimized height map speed have been compared and tested. Through this study, we reach the issue that it is possible to express the variable flow speed of soap bubbles with the optimized height map, and it will help to express various fluids.

Effect of channel hight on Bubble growth under Saturated Nucleate Pool Boiling for Various Channel Height using Heater with Artificial Cavity (인공 캐비티를 가진 히터를 이용한 가열면의 채널 높이가 풀비등시 기포성장에 미치는 영향에 대한 기초연구)

  • Kim, Jeong-Bae;Park, Moon-Hee;Jeon, Woo-Cheol
    • Journal of the Korean Solar Energy Society
    • /
    • v.30 no.5
    • /
    • pp.93-99
    • /
    • 2010
  • Nucleate pool boiling experiments with constant heat flux condition were performed using pure R113 for various channel heights under saturated pool condition. A circular heater of 1mm diameter, with artificial cavity in the center, fabricated using MEMS technique and the high-speed controller were used to maintain the constant heat flux. Images of bubble growth were taken at 5,000 frames per second using a high-speed CCD camera. The bubble geometry was obtained from the captured bubble images. The effects of channel height on the bubble growth behaviors were analyzed as dimensional scales for the initial and thermal growth regions. The parameters for the bubble growth behaviors were bubble radius, bubble growth rate, and bubble shapes. These phenomena require further analysis for various surface angles, but this study will provide good experimental data with constant heat flux boundary condition for such works.

Tube phonation in water for patients with hyperfunctional voice disorders: The effect of tube diameter and water immersion depth on bubble height and maximum phonation time (과기능적 음성장애 환자의 물저항발성: 튜브 직경과 물 깊이가 물거품 높이 및 최대발성지속시간에 미치는 영향)

  • Min Gyeong Kim;Seong Hee Choi;Jong-In Youn
    • Phonetics and Speech Sciences
    • /
    • v.15 no.2
    • /
    • pp.31-40
    • /
    • 2023
  • Tube phonation in water has been widely used for voice training among semi-occluded vocal tract (SOVT) exercises in which the patient bubbles with phonation keeping the tube submerged in water. This study aims to investigate the effect of tube diameter and water depth on bubble height and maximum phonation time (MPT) for patients with hyperfunctional voice disorders. Seventeen patients with hyperfunctional voice disorders were asked to bubble with sustained /u/ at the different inner diameters of tube (5, 7, and 10 mm), water depth (4, 7, and 10 cm). A water resistance phonation biofeedback system using a water height sensor was used for recording bubble height and MPT. The bubble height was significantly changed by the tube diameter while MPT was significantly changed with the tube diameter and water depth. Although the wider tube presented significantly lower bubble height for a given depth, relatively consistent bubble height was maintained. Depending on the water depth, the bubble height did not significantly differ for a given tube diameter. In addtion, MPT significantly decreased with water depth and a wider tube led significantly shorter MPT. A water level-driven water resistance biofeedback system provided useful information on bubble characteristics and vocal fold vibration depending on tube diameter and water depth. It can be useful to monitor the breath support during water resistance phonation for patients with hyperfunctional voice disorders.

Operating Characteristics of a Bubble Pump for Diffusion-Absorption Refrigerator (확산형 흡수식 냉동기용 기포펌프의 운전특성에 관한 연구)

  • 이현경;김선창;이재헌
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.13 no.9
    • /
    • pp.878-887
    • /
    • 2001
  • Experimental investigation has been carried out to examine the operating characteristics of a bubble pump for diffusion absorption refrigerator. The effects of heat input and delivery height on generation rate of refrigerant vapor and circulation rate of solution have been investigated. as a result heat input and delivery height increase, circulation rate of solution increases. And the smaller the tube diameter, the larger the circulation rate of solution. Pumping ratio increases to a critical point and then decrease with the increase of heat input, and it increases with the increase in delivery height. In this paper, Marcus's analytical theory was also examined. It was found that the Marcus\`s analytical theory of a bubble pump was not appropriate for a bubble pump using ammonia aqueous solution as a working fluid.

  • PDF

The Birth and Development of High-Rise Buildings in Japan: Focusing on the Historical Development of Height and Floor Area Ratio Regulations

  • Akihiko Osawa
    • International Journal of High-Rise Buildings
    • /
    • v.12 no.3
    • /
    • pp.195-201
    • /
    • 2023
  • This paper reviews the history of the birth and development of the skyscraper in Japan, mainly from the perspective of the legal system, and presents the following points: 1) After 1919, building height was limited to 31 m or less, which continued after the war and defined the skyline of Japan's major cities; 2) The 31-meter height limit became a problem during rapid economic growth. With the development of tall building construction technology, the height limit was eliminated, and skyscrapers were born in Japan in the 1960s; 3) Later, the number of skyscrapers increased more rapidly in the post-bubble period after the collapse of the bubble economy in the 2000s than in the boom years of the 1980s, when the floor-area ratio was relaxed for economic uplift and urban renewal. The number of skyscrapers increased rapidly against the backdrop of the deregulation of the floor-area ratio.

An Experimental Study on the Flow Characteristics in Highly Viscous Liquid by Multi-Nozzle Bubbling (고점성 액체 내부에서의 다중 노즐 버블링에 의한 유동특성에 대한 실험적 연구)

  • Kim, Hyun-Dong;Ryu, Seung-Gyu;Kim, Kyung-Chun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.2 s.257
    • /
    • pp.195-201
    • /
    • 2007
  • A visualization study of flow characteristics in a mixer using multi-nozzle bubbling was performed. The mixer is filed with liquid glycerin (dynamic viscosity = $1000mPa{\cdot}s\;at\;25^{\circ}C$) and convective mixing is induced by air bubbles generated from 9 orifices installed on the bottom of the mixer. To visualize the flow field, PIV (Particle Image Velocimetry) system consisting of 532nm Nd:YAG laser, $2k{\times}2k$ CCD camera and synchronizer is adopted. The bubbles generated with uniform size and frequency form bubble stream and bubble streams rise vertically without interaction between bubble streams. Mixing efficiency is affected by the height of bubbler and the effective height of bubbler is 20nm from the bottom of the mixer.

Flow Visualization and PIV Measurement of Multiphase Flow in Highty Viscous Liquid (고점성 유체 내부에서의 다상유동장 가시화 및 PIV 측정)

  • Kim, Hyun-Dong;Ryu, Seung-Gyu;Kim, Kyung-Chun
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2006.12a
    • /
    • pp.48-54
    • /
    • 2006
  • A visualization study of flow characteristics in a mixer using multi-nozzle bubbling was performed. The mixer is filled with liquid glycerin (dynamic viscosity = $1000mPa{\cdot}$ s at $25^{\circ}C$) and convective mixing is induced by air bubbles generated from 9 orifices installed on the bottom of the mixer. To visualize the flow field, PIV (Particle Image Velocimetry) system consisting of 532nm Nd:YAG laser, $2k\times2k$ CCD camera and synchronizer is adopted. The bubbles generated with uniform size and frequency form bubble stream, and bubble streams rise vertically without interaction between bubble streams. Mixing efficiency is affected by the height of bubbler and the effective height of bubbler is 20mm from the bottom of the mixer.

  • PDF

Gas and Liquid Flow Characteristics in an Internal Circulation Airlift Reactor using a Single Nozzle -Effects of Flow Zone Sizes- (단일노즐을 사용한 내부순환 공기리프트 반응기에서 기체 및 액체의 유동특성 - 유동지역의 크기영향 -)

  • Jang, Sea-Il;Kim, Jong-Chul;Jang, Young-Joon;Son, Min-Il;Kim, Tae-Ok
    • Applied Chemistry for Engineering
    • /
    • v.9 no.6
    • /
    • pp.901-906
    • /
    • 1998
  • Gas and liquid flow characteristics were investigated in an internal circulation airlift reactor using a single nozzle for a gas distributor. In three reactors with different diameters of the downcomer and heights of the riser, the gas holdup in the individual flow zone and the impulseresponse curve of tracer for an air-water system were measured for various gas velocities and reactor heights. Experimental results showed that the flow behavior of bubbles in the riser was the slug flow due to strong coalescences of bubbles and that the bubble flow pattern in the downcomer was the transition bubble flow for the smaller diameter of the downcomer, however, it was the homogeneous bubble flow for the larger one. And mean gas holdups in the individual flow zone and the reactor were greatly increased with decreasing the diameter of the downcomer for the equal ratio of height of the top section to that of the riser. Also, the mixing time was much effected by the height of the top section of reactor and for the equal ratio of height of top section to that of the riser, it was increased with increasing the diameter of the downcomer and the height of the riser. Flow characteristics of liquid were mainly varied with the bubble flow pattern in the downcomer and the size of the top section of reactor. And circulation velocities of liquid in the riser were increased with increasing gas velocities and the size of the top section of reactor, and for the equal ratio of height of top section to that of the riser, they were increased with increasing the diameter of the downcomer and the height of the riser.

  • PDF

The Effect of Partitioning Porous Plate on Bubble Behavior and Gas Hold-up in a Bench Scale (0.36 m × 22 m) Trayed Bubble Column (벤치스케일(0.36 m × 22 m) 다단형 기포탑에서 다공판이 기포의 거동 및 기체 체류량에 미치는 영향)

  • Yang, Jung Hoon;Hur, Young Gul;Lee, Ho-Tae;Yang, Jung-Il;Kim, Hak-Joo;Chun, Dong Hyun;Park, Ji Chan;Jung, Heon
    • Korean Chemical Engineering Research
    • /
    • v.50 no.3
    • /
    • pp.505-510
    • /
    • 2012
  • The gas hold-up has a strong relationship with the size distribution and rising velocities of bubbles in a bubble column. Therefore, many previous researchers have studied on the hydrodynamics focusing on the bubble size variation in bubble column. In this study, the bubble behavior was influenced by partitioning porous plates installed at a certain height in a trayed bubble column. The gas hold-up was increased in non-sparging region (H/D > 5) as well as sparging region. We identified the effect of the partitioning porous plate using three trayed bubble columns with different reactor geometries. Furthermore, the bubble break-up frequency and size distribution were observed before and after individual bubbles penetrated through the plate. The arrangement of the plates was also investigated using a 0.15-m-in-diameter bubble column. Based on the result, we applied this design concept to a 0.36-m-in-diameter, 22 m tall trayed bubble column and identified the effect of the partitioning porous plate on the gas hold-up increase.

Methane Recovery and Carbon Dioxide Stripping by MEA Solution the Autocirculation Bubble Lift Column Reactor (내부순환식 기포탑 반응기 상에서 MEA (monoethanolamine) 용액에 의한 이산화탄소 분리 및 메탄회수)

  • Lee, In-Hwa;Kim, Sun-Yil;Park, Ju-Young
    • Applied Chemistry for Engineering
    • /
    • v.18 no.3
    • /
    • pp.239-244
    • /
    • 2007
  • For the simultaneous methane recovery and $CO_2$-stripping, we have been developed dual vent auto circulation bubble lift column reactor, and evaluate optimum conditions for monoethanolamine (MEA) solutions as a $CO_2$ absorbent. At the 5 wt% MEA solution, we investigated the pH change during $CO_2$-stripping and absorption reaction, $CO_2$-stripping rate with reaction time, methane recovery efficiency for various inflow rates of air, $CO_2$-stripping rate for flow liquid over flow height, and $CO_2$-stripping dependency on the temperature of absolvent solutions. The suggested optimum conditions for $CO_2$ recovery with MEA in the dual vent auto circulation bubble lift column reactor were 40 mm over flow liquid height, 1.5 L/min of air inflow rate, and $25^{\circ}C$ of absorbent solution temperature.