• Title/Summary/Keyword: bubble-point

Search Result 118, Processing Time 0.03 seconds

Multiphase turbulence mechanisms identification from consistent analysis of direct numerical simulation data

  • Magolan, Ben;Baglietto, Emilio;Brown, Cameron;Bolotnov, Igor A.;Tryggvason, Gretar;Lu, Jiacai
    • Nuclear Engineering and Technology
    • /
    • v.49 no.6
    • /
    • pp.1318-1325
    • /
    • 2017
  • Direct Numerical Simulation (DNS) serves as an irreplaceable tool to probe the complexities of multiphase flow and identify turbulent mechanisms that elude conventional experimental measurement techniques. The insights unlocked via its careful analysis can be used to guide the formulation and development of turbulence models used in multiphase computational fluid dynamics simulations of nuclear reactor applications. Here, we perform statistical analyses of DNS bubbly flow data generated by Bolotnov ($Re_{\tau}=400$) and LueTryggvason ($Re_{\tau}=150$), examining single-point statistics of mean and turbulent liquid properties, turbulent kinetic energy budgets, and two-point correlations in space and time. Deformability of the bubble interface is shown to have a dramatic impact on the liquid turbulent stresses and energy budgets. A reduction in temporal and spatial correlations for the streamwise turbulent stress (uu) is also observed at wall-normal distances of $y^+=15$, $y/{\delta}=0.5$, and $y/{\delta}=1.0$. These observations motivate the need for adaptation of length and time scales for bubble-induced turbulence models and serve as guidelines for future analyses of DNS bubbly flow data.

Mesh Generation Methodology for FE Analysis of 3D Structures Using Fuzzy Knowledge and Bubble Method (피지이론과 버블기법을 이용한 3차원 구조물의 유한요소해석을 위한 요소생성기법)

  • Lee, Joon-Seong;Lee, Eun-Chul
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.19 no.2
    • /
    • pp.230-235
    • /
    • 2009
  • This paper describes an automatic finite element mesh generation for finite element analysis of three-dimensional structures. It is consisting of fuzzy knowledge processing, bubble meshing and solid geometry modeler. This novel mesh generation process consists of three subprocesses: (a) definition of geometric model, i.e. analysis model, (b) generation of bubbles, and (c) generation of elements. One of commercial solid modelers is employed for three-dimensional solid structures. Bubble is generated if its distance from existing bubble points is similar to the bubble spacing function at the point. The bubble spacing function is well controlled by the fuzzy knowledge processing. The Delaunay method is introduced as a basic tool for element generation. Automatic generation of finite element for three-dimensional solid structures holds great benefits for analyses. Practical performances of the present system are demonstrated through several mesh generations for 3D geometry.

Image processing method of two-phase bubbly flow using ellipse fitting algorithm (최적 타원 생성 알고리즘 기반 2상 기포 유동 영상 처리 기법)

  • Myeong, Jaewon;Cho, Seolhee;Lee, Woonghee;Kim, Sungho;Park, Youngchul;Shin, Weon Gyu
    • Journal of the Korean Society of Visualization
    • /
    • v.19 no.1
    • /
    • pp.28-35
    • /
    • 2021
  • In this study, an image processing method for the measurement of two-phase bubbly flow is developed. Shadowgraphy images obtained by high-speed camera are used for analysis. Some bubbles are generated as single unit and others are overlapped or clustered. Single bubbles can be easily analyzed using parameters such as bubble shape, centroid, and area. But overlapped bubbles are difficult to transform clustered bubbles into segmented bubbles. Several approaches were proposed for the bubble segmentation such as Hough transform, connection point method and watershed. These methods are not enough for bubble segmentation. In order to obtain the size distribution of bubbles, we present a method of splitting overlapping bubbles using watershed and approximating them to ellipse. There is only 5% error difference between manual and automatic analysis. Furthermore, the error can be reduced down to 1.2% when a correction factor is used. The ellipse fitting algorithm developed in this study can be used to measure bubble parameters accurately by reflecting the shape of the bubbles.

Automatic Mesh Generation System for FE Analysis of 3D Crack (3차원 균열의 유한요소해석을 위한 자동요소분할 시스템)

  • Lee, Ho-Jeong;Lee, Joon-Seong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.9
    • /
    • pp.2183-2188
    • /
    • 2009
  • This paper describes an automatic mesh generation system for finite element analysis of three-dimensional cracks. It is consisting of fuzzy knowledge processing, bubble meshing and solid geometry modeler. This novel mesh generation process consists of three sub-processes: (a) definition of geometric model, i.e. analysis model, (b) generation of bubbles, and (c) generation of elements. One of commercial solid modelers is employed for three-dimensional crack structures. Bubble is generated if its distance from existing bubble points is similar to the bubble spacing function at the point. The bubble spacing function is well controlled by the fuzzy knowledge processing. The Delaunay method is introduced as a basic tool for element generation. Practical performances of the present system are demonstrated through several mesh generations for 3D cracks.

Modeling of Mesh Screen for Use in Surface Tension Tank Using Flow-3d Software (Flow-3d를 이용한 표면장력 탱크용 메시 스크린 모델링)

  • Kim, Hyuntak;Lim, Sang Hyuk;Yoon, Hosung;Park, Jeong-Bae;Kwon, Sejin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.984-990
    • /
    • 2017
  • Mesh screen modeling and liquid propellant discharge simulation of surface tension tank were performed using commercial CFD software Flow-3d. $350{\times}2600$, $400{\times}3000$ and $510{\times}3600$ DTW mesh screen were modeled using macroscopic porous media model. Porosity, capillary pressure, and drag coefficient were assigned for each mesh screen model, and bubble point simulations were performed. The mesh screen model was validated with the experimental data. Based on the screen modeling, liquid propellant discharge simulation from PMD tank was performed. NTO was assigned as the liquid propellant, and void was set to flow into the tank inlet to achieve an initial volume flow rate of liquid propellant in $3{\times}10^{-3}g$ acceleration condition. The intial flow pressure drop through the mesh screen was approximately 270 Pa, and the pressure drop increased with time. Liquid propellant discharge was sustained until the flow pressure drop reached approximately 630 Pa, which was near the estimated bubble point value of the screen model.

  • PDF

Large-Scale Structure of Leading-Edge Separation Bbubble with Local Forcing (국소교란이 가해지는 박리기포의 대형구조)

  • 김유익;성형진
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.4
    • /
    • pp.1134-1147
    • /
    • 1995
  • POD (proper orthogonal decomposition) is applied to turbulent leading-edge separation bubble to extract coherent structures. A two-dimensional leading-edge separation bubble is simulated by discrete-vortex method, where a time-dependent source forcing is incorporated. Based on the wealth of numerical data, POD is applied in a range of the forcing amplitude ( $A_{o}$ = 0, 0.5, 1.0 and 1.5) and forcing frequency (0 .leq. $f_{F}$H/ $U_{\infty}$.leq. 0.3). It is demonstrated that the structures of POD have noticeable changes with local forcings. In an effort to investigate the mechanism of decreasing reattachment length, dynamic behaviors of the expansion coefficients and contributions of the eigenfunctions of POD are scrutinized. As the forcing amplitude increases, the large-scale vortex structures are formed near the forcing amplitude increases, the large-scale vortex structures are formed near the separation point and the flow structures become more organized and more regular, accompanying with the reduction of reattachment length. By further inverstigation of POD global entropy, it is seen that the reattachment length is closely linked to the degree of organization of the flow structures.es.s.

Performance Increase for a 2 kW Open Cathode Type Fuel Cell Using Temperature/Humidity Control (2 kW급 개방 캐소드형 연료전지 출력 향상을 위한 온습도 제어)

  • YUAN, WEIWEI;CHOI, MIHWA;YANG, SEUGRAN;KIM, YOUNG-BAE
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.28 no.4
    • /
    • pp.369-376
    • /
    • 2017
  • Temperature and humidity regulations of an open-cathode PEM fuel cell with balance of plant (BOP) are developed in this study. The axial fan, a bubble humidifier, set of solenoid valves and a controller are used to perform temperature and humidity control simultaneously. A fuzzy controller is designed, and it shows its superiority in real-time controlling for strong non-linear dynamical fuel cell system. The axial fan speed is used for temperature control and solenoid valve on/off signal of the bubble humidifier is used for humidity control. The axial fan speed is controlled to keep the fuel cell temperature within the desired point. Meanwhile, the bubble humidifier is utilized to moisture hydrogen to manage the water content of membrane. The results show that the proposed fuzzy controller effectively increases the output power of 10% for a PEM fuel cell.

A Study on the Formation Mechanism of Discontinuities in $CO_2$ Laser Fusion Zone of Fe-Co-Ni Sintered Segment and Carbon Steel (Pe-Co-Ni 분말 소결 금속과 탄소강의 이종재료간 레이저 용접부의 결함형성기구 연구)

  • 신민효;김태웅;박희동;이창희
    • Journal of Welding and Joining
    • /
    • v.21 no.3
    • /
    • pp.58-67
    • /
    • 2003
  • In this study, the formation mechanism of discontinuities in the laser fusion zone of diamond saw blade was investigated. $CO_2$ laser weldings were conducted along the butt between Fe base sintered tip and carbon steel shank with sets of variable welding parameters. The effect of heat input on irregular humps, outer cavity, inner cavity and bond strengh was evaluated. The optimum heat input to have a proper humps was in the range of 10.4~$17.6kJm_{-1}$. With increasing heat input, both outer and inner cavities were reduced. The outer cavity was caused by insufficient refill of keyhole, while inner cavity was caused by trapping of bubble in molten metal. The bubble came from sintered tip and intensive vaporization at bottom tip of the keyhole. A gas formation and low melting point element vaporization were not occurred during welding. We could not find any relationship between bond strength and amount of discontinuities. Because the fracture were occurred in not only sintered tip but also carbon steel shank due to hardness distributions.

Simulations of fiber spinning and film blowing based on a molecular/continuum model for flow-induced crystallization

  • McHugh, Anthony J.;Doufas, A.K.
    • Korea-Australia Rheology Journal
    • /
    • v.13 no.1
    • /
    • pp.1-12
    • /
    • 2001
  • This paper describes the application of our recently developed two-phase model for flow-induced crystallization (FIC) to the simulation of fiber spinning and film blowing. 1-D and 2-D simulations of fiber spinning include the combined effects of (FIC), viscoelasticity, filament cooling, air drag, inertia, surface tension and gravity and the process dynamics are modeled from the spinneret to the take-up roll device (below the freeze point). 1-D model fits and predictions are in very good quantitative agreement with high- and low-speed spinline data for both nylon and PET systems. Necking and the associated extensional softening are also predicted. Consistent with experimental observations, the 2-D model also predicts a skin-core structure at low and intermediate spin speeds, with the stress, chain extension and crystallinity being highest at the surface. Film blowing is simulated using a "quasi-cylindrical" approximation for the momentum equations, and simulations include the combined effects of flow-induced crystallization, viscoelasticity, and bubble cooling. The effects of inflation pressure, melt extrusion temperature and take-up ratio on the bubble shape are predicted to be in agreement with experimental observations, and the location of the frost line is predicted naturally as a consequence of flow-induced crystallization. An important feature of our FIC model is the ability to predict stresses at the freeze point in fiber spinning and the frost line in film blowing, both of which are related to the physical and mechanical properties of the final product.l product.

  • PDF