• Title/Summary/Keyword: c-Fos

Search Result 472, Processing Time 0.053 seconds

Pyrrole-Derivative of Chalcone, (E)-3-Phenyl-1-(2-Pyrrolyl)-2-Propenone, Inhibits Inflammatory Responses via Inhibition of Src, Syk, and TAK1 Kinase Activities

  • Yang, Sungjae;Kim, Yong;Jeong, Deok;Kim, Jun Ho;Kim, Sunggyu;Son, Young-Jin;Yoo, Byong Chul;Jeong, Eun Jeong;Kim, Tae Woong;Han Lee, In-Sook;Cho, Jae Youl
    • Biomolecules & Therapeutics
    • /
    • v.24 no.6
    • /
    • pp.595-603
    • /
    • 2016
  • (E)-3-Phenyl-1-(2-pyrrolyl)-2-propenone (PPP) is a pyrrole derivative of chalcone, in which the B-ring of chalcone linked to ${\beta}$-carbon is replaced by pyrrole group. While pyrrole has been studied for possible Src inhibition activity, chalcone, especially the substituents on the B-ring, has shown pharmaceutical, anti-inflammatory, and anti-oxidant properties via inhibition of NF-${\kappa}B$ activity. Our study is aimed to investigate whether this novel synthetic compound retains or enhances the pharmaceutically beneficial activities from the both structures. For this purpose, inflammatory responses of lipopolysaccharide (LPS)-treated RAW264.7 cells were analyzed. Nitric oxide (NO) production, inducible NO synthase (iNOS) and tumor necrosis factor-${\alpha}$ (TNF-${\alpha}$) mRNA expression, and the intracellular inflammatory signaling cascade were measured. Interestingly, PPP strongly inhibited NO release in a dose-dependent manner. To further investigate this anti-inflammatory activity, we identified molecular pathways by immunoblot analyses of nuclear fractions and whole cell lysates prepared from LPS-stimulated RAW264.7 cells with or without PPP pretreatment. The nuclear levels of p50, c-Jun, and c-Fos were significantly inhibited when cells were exposed to PPP. Moreover, according to the luciferase reporter gene assay after cotransfection with either TRIF or MyD88 in HEK293 cells, NF-${\kappa}B$-mediated luciferase activity dose-dependently diminished. Additionally, it was confirmed that PPP dampens the upstream signaling cascade of NF-${\kappa}B$ and AP-1 activation. Thus, PPP inhibited Syk, Src, and TAK1 activities induced by LPS or induced by overexpression of these genes. Therefore, our results suggest that PPP displays anti-inflammatory activity via inhibition of Syk, Src, and TAK1 activity, which may be developed as a novel anti-inflammatory drug.

Isolation of Biogenic Amine Non-producing Lactobacillus brevis SBB07 and Its Potential Probiotic Properties (바이오제닉 아민 비생성 Lactobacillus brevis SBB07의 분리 및 잠재적 프로바이오틱스 특성 분석)

  • Yang, Hee-Jong;Jeong, Su-Ji;Jeong, Seong-Yeop;Ryu, Myeong Seon;Jeong, Do-Youn
    • Journal of Life Science
    • /
    • v.28 no.1
    • /
    • pp.68-77
    • /
    • 2018
  • The purpose of this study was to isolate the probiotic lactic acid bacteria, and verify the possibility of the final selection strain as probiotic material. For screening of biogenic amines non-producing microorganisms, 42 lactic acid bacteria were isolated from various berries, extract and vinegar grown in Sunchang. Isolates were investigated for various physiological activities such as extracellular enzyme, antimicrobial and antioxidant activities, and 5 isolates were firstly screened. SBB07 was finally selected by analyzing the biogenic amine, and named Lactobacillus brevis SBB07 by 16S rRNA sequencing analysis. Next, SBB07 was assayed for their survival ability when exposed to acidic and bile conditions as well as heat and antibiotic resistance. As a result, SBB07 showed more than 86% and 54% higher survival rate in acidic condition at pH 2.0 and bile resistance with 0.5% oxgall. In addition, SBB07 showed a survival rate of more than 113% in $60^{\circ}C$, and also confirmed that it has resistant to various antibiotics. As a result of confirming the possibility of prebiotics, SBB07 showed the best utilization of GOS as a prebiotic substrate, and utilization of FOS and inulin were also high. These results suggest that SBB07 have good potential for application as probiotic lactic acid bacteria.

Dehydrocostus lactone inhibits NFATc1 via regulation of IKK, JNK, and Nrf2, thereby attenuating osteoclastogenesis

  • Lee, Hye In;Lee, Gong-Rak;Lee, Jiae;Kim, Narae;Kwon, Minjeong;Kim, Hyun Jin;Kim, Nam Young;Park, Jin Ha;Jeong, Woojin
    • BMB Reports
    • /
    • v.53 no.4
    • /
    • pp.218-222
    • /
    • 2020
  • Excessive and hyperactive osteoclast activity causes bone diseases such as osteoporosis and periodontitis. Thus, the regulation of osteoclast differentiation has clinical implications. We recently reported that dehydrocostus lactone (DL) inhibits osteoclast differentiation by regulating a nuclear factor of activated T-cells, cytoplasmic 1 (NFATc1), but the underlying mechanism remains to be elucidated. Here we demonstrated that DL inhibits NFATc1 by regulating nuclear factor-κB (NF-κB), activator protein-1 (AP-1), and nuclear factor-erythroid 2-related factor 2 (Nrf2). DL attenuated IκBα phosphorylation and p65 nuclear translocation as well as decreased the expression of NF-κB target genes and c-Fos. It also inhibited c-Jun N-terminal kinase (JNK) but not p38 or extracellular signal-regulated kinase. The reporter assay revealed that DL inhibits NF-κB and AP-1 activation. In addition, DL reduced reactive oxygen species either by scavenging them or by activating Nrf2. The DL inhibition of NFATc1 expression and osteoclast differentiation was less effective in Nrf2-deficient cells. Collectively, these results suggest that DL regulates NFATc1 by inhibiting NF-κB and AP-1 via down-regulation of IκB kinase and JNK as well as by activating Nrf2, and thereby attenuates osteoclast differentiation.

The Suppressive Effect on Th2 Cytokines Expression and the Signal Transduction Mechanism in MC/9 Mast Cells by PRAL (MC/9 비만세포에서 행인(杏仁) 추출물의 Th2 cytokine 발현 억제 효과 및 신호전달 기전 연구)

  • Kang, Ki Yeon;Han, Jae Kyung;Kim, Yun Hee
    • The Journal of Pediatrics of Korean Medicine
    • /
    • v.28 no.2
    • /
    • pp.23-39
    • /
    • 2014
  • Objectives PRAL (Prunus armniaca Linne Var) is a herbal formula in Oriental Medicine, known for its anti-inflammatory and anti-allergenic properties. However, its mechanism of action and the cellular targets have not yet been found enough. The purpose of this study is to investigate the effects of PRAL on Th2 cytokines expression in MC/9 mast cells. Methods The effect of PRAL was analyzed by ELISA, Real-time PCR, Western blot in MC/9 mast cells. mRNA levels of GM-CSF, IL-4, IL-5, IL-6, IL-13, TNF-${\alpha}$ were analyzed with Real-time PCR. Levels of IL-13, MIP-$1{\alpha}$ were measured using enzyme-linked immunosorbent assays (ELISA). NFAT, AP-1 and NF-${\kappa}B$ p65 were examined by Western blot analysis. Results PRAL inhibited GM-CSF, IL-4, IL-5, IL-6, IL-13, TNF-${\alpha}$ mRNA expression in a dose dependent manner. GM-CSF, IL-4, IL-5 mRNA expression were inhibited significantly in comparison to DNP-IgE control group at concentration of 100 ${\mu}g/ml$ and IL-6, IL-13, TNF-${\alpha}$ mRNA expression were inhibited at concentration of 50 ${\mu}g/ml$, 100 ${\mu}g/ml$. PRAL also inhibited the IL-13, MIP-$1{\alpha}$ production significantly in comparison to DNP-IgE control group in a dose dependent manner. IL-13 production was inhibited at a concentration of 200 ${\mu}g/ml$, 400 ${\mu}g/ml$ and MIP-$1{\alpha}$ was inhibited at a concentration of 100 ${\mu}g/ml$, 200 ${\mu}g/ml$, 400 ${\mu}g/ml$. Western blot analysis of transcription factors involving Th2 cytokines expression revealed prominent decrease of the mast cell specific transcription factors including NFAT-1, c-Jun as well as NF-${\kappa}B$ p65 but not NFAT-2 and c-Fos. Conclusion These results indicate that PRAL has the effect of suppressing Th2 cytokines production in the MC/9 mast cells. These data represent that PRAL potentiates therapeutic activities to the allergic disease by regulating Th2 cytokines in the MC/9 mast cells.

Participation of nitric oxide pathways in interleukin 1$\beta$-induced mechanical allodynia in the orofacial area of rats

  • Kang, Young-M.;Lee, Min-K.;Yang, Gwi-Y.;Bae, Yong-C.;Ahn, Dong-K.
    • International Journal of Oral Biology
    • /
    • v.34 no.1
    • /
    • pp.1-6
    • /
    • 2009
  • The purpose of the present study was to examine the role of peripheral nitric oxide (NO) pathways in the onset of interleukin (IL)-1$\beta$-induced mechanical allodynia in the orofacial area. Experiments were carried out on male Sprague-Dawley rats weighing 230-280 gm and surgical procedures were performed under pentobarbital sodium (40 mg/kg, i.p.). Under anesthesia, a polyethylene tube (PE10) was implanted into the subcutaneous area of one vibrissa pad, which enabled the injection of IL-1$\beta$ or other chemicals. We subcutaneously injected 50 ${\mu}L$ of IL-1$\beta$ into a vibrissa pad through the implanted polyethylene tube with a 100 ${\mu}L$ Hamilton syringe. After the administration of 0.01, 0.1, 1, or 10 pg of IL-1$\beta$, withdrawal behavioral responses were examined. The subcutaneous injection of saline had no effects on the air-puff thresholds. Following the subcutaneous injection of 0.01, 0.1, 1, or 10 pg of IL-1$\beta$, the threshold of air puffs decreased significantly to 12 $\pm$ 3, 7 $\pm$ 2, 5 $\pm$ 1, or 5 $\pm$ 1 psi, respectively, in a dose dependent manner. Pretreatment with L-NAME, a nitric oxide synthase (NOS) inhibitor, blocked IL-1$\beta$-induced mechanical allodynia. However, neither D-NAME, an inactive isomer of L-NAME, nor vehicle affected the IL-1$\beta$-induced mechanical allodynia. Subcutaneous injection of IL-1$\beta$ increased the number of c-fos-like immunoreactive neurons, whereas pretreatment with L-NAME decreased this number, in the trigeminal caudal nucleus. These results suggest that pro-inflammatory cytokines and NO are important contributors to the pathogenesis of persistent and exaggerated IL-1$\beta$-induced pain states. Based on these observations, peripheral application of NOS inhibitors may be of therapeutic value in treating pain disorders in the clinic.

The highly pathogenic H5N1 avian influenza virus induces the mitogen-activated protein kinase signaling pathway in the trachea of two Ri chicken lines

  • Vu, Thi Hao;Hong, Yeojin;Truong, Anh Duc;Lee, Sooyeon;Heo, Jubi;Lillehoj, Hyun S.;Hong, Yeong Ho
    • Animal Bioscience
    • /
    • v.35 no.7
    • /
    • pp.964-974
    • /
    • 2022
  • Objective: The highly pathogenic avian influenza virus (HPAIV) is a threat to the poultry industry and economy and remains a potential source of pandemic infection in humans. Antiviral genes are considered a potential factor for studies on HPAIV resistance. Therefore, in this study, we investigated gene expression related to the mitogen-activated protein kinase (MAPK) signaling pathway by comparing non-infected, HPAI-infected resistant, and susceptible Ri chicken lines. Methods: Resistant (Mx/A; BF2/B21) and susceptible Ri chickens (Mx/G; BF2/B13) were selected by genotyping the Mx and BF2 genes. Then, the tracheal tissues of non-infected and HPAIV H5N1 infected chickens were collected for RNA sequencing. Results: A gene set overlapping test between the analyzed differentially expressed genes (DEGs) and functionally categorized genes was performed, including biological processes of the gene ontology (GO) and Kyoto encyclopedia of genes and genomes (KEGG) pathways. A total of 1,794 DEGs were observed between control and H5N1-infected resistant Ri chickens, 432 DEGs between control and infected susceptible Ri chickens, and 1,202 DEGs between infected susceptible and infected resistant Ri chickens. The expression levels of MAPK signaling pathway-related genes (including MyD88, NF-κB, AP-1, c-fos, Jun, JunD, MAX, c-Myc), cytokines (IL-1β, IL-6, IL-8), type I interferons (IFN-α, IFN-β), and IFN-stimulated genes (Mx1, CCL19, OASL, and PRK) were higher in H5N1-infected than in non-infected resistant Ri chickens. MyD88, Jun, JunD, MAX, cytokines, chemokines, IFNs, and IFN-stimulated expressed genes were higher in resistant-infected than in susceptible-infected Ri chickens. Conclusion: Resistant Ri chickens showed higher antiviral activity compared to susceptible Ri chickens, and H5N1-infected resistant Ri chickens had immune responses and antiviral activity (cytokines, chemokines, interferons, and IFN-stimulated genes), which may have been induced through the MAPK signaling pathway in response to H5N1 infection.

Effect of Moutan Cortex Radicis on gene expression profile of differentiated PC12 rat cells oxidative-stressed with hydrogen peroxide (모단피의 PC12 cell 산화억제 효과 및 neuronal 유전자 발현 profile 분석에 대한 연구)

  • Kim Hyun Hee;Rho Sam Woong;Na Youn Gin;Bae Hyun Su;Shin Min Kyu;Kim Chung Suk;Hong Moo Chang
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.17 no.2
    • /
    • pp.529-541
    • /
    • 2003
  • Yukmijihwang-tang has been widely used as an and-aging herbal medicine for hundred years in Asian countries. Numerous studies show that Yukmijihwangtang has anti-oxidative effect both in vivo and in vitro. It has been reported that Moutan Cortex Radicis extract (MCR) was the most effective herb in Yukmijihwang-tang on undifferentiated PC12 cells upon oxidative-stressed with hydrogen peroxide. The purpose of this study is to; 1) evaluate the recovery of neuronal damage by assessing the anti-oxidant effect of MCR on PC12 cells differentiated with nerve growth factor (NGF), 2) identify candidate genes responsible for anti-oxidative effect on differentiated PC12 cells by oligonucleotide chip microarray. PC12 cells, which were differentiated by treating with NGF, were treated without or with hydrogen peroxide in the presence or absence of various concentration of MCR. Cell survival was determined by using MTS assay. Measurement of intracellular reactive oxygen species (ROS) generation was determined using the H2DCFDA assay The viability of cells treated with MCR was significantly recovered from stressed PC12 cell. In addition, wide rage of concentrations of MCR shows dose-dependent inhibitory effect on ROS production in oxidative-stressed cells. Total RNAs of cells without treatment(Control group), only treated with H₂O₂ (stressed group) and treated with both H₂O₂ and of MCR (MCR group) were isolated, and cDNAs was synthesized using oligoT7(dT) primer. The fragmented cRNAs, synthesized from cDNAs, were applied to Affymetrix GeneChip Rat Neurobiology U34 Array. mRNA of Calcium/calmodulin-dependent protein kinase II delta subunit(CaMKII), neuron glucose transporter (GLUT3) and myelin/oligodendrocyte glycoprotein(MOG) were downregulated in Stressed group comparing to Control group. P2X2-5 receptor (P2X2R-5), P2X2-4 receptor (P2X2R-4), c-fos, 25 kDa synaptosomal attachment protein(SNAP-25a) and GLUT3 were downregulated, whereas A2 adenosine receptor (A2AR), cathechol-O-methyltransferase(COMT), glucose transporter 1 (GLUT1), EST223333, heme oxygenase (HO), VGF, UI-R-CO-ja-a-07-0-Ul.s1 and macrophage migration inhibitory factor (MIF) were upregulated in MCA group comparing to Control group. Expression of Putative potassium channel subunit protein (ACK4), P2X2A-5, P2X2A-4, Interferon-gamma inducing factor isoform alpha precursor (IL-18α), EST199031, P2XR, P2X2 purinoceptor isoform e (P2X2R-e), Precursor interleukin 18 (IL-18) were downregulated, whereas MOO, EST223333, GLUT-1, MIF, Neuronatin alpha, UI-R-C0-ja-a-07-0-Ul.s1, A2. adenosine receptor, COMT, neuron-specific enolase (NSE), HO, VGF, A rat novel protein which is expressed with nerve injury (E12625) were upregulated in MCR group comparing to Stressed group. The results suggest that decreased viability and AOS production of PC12 cell by H₂O₂ may be, at lease, mediated by impaired glucose transporter expression. It is implicated that the MCR treatment protect PC12 cell from oxidative stress via following mechanisms; improving glucose transport into the cell, enhancing expression of anti-oxidative genes and protecting from dopamine cytotoxicity by increment of COMT and MIF expression. The list of differentially expressed genes may implicate further insight on the action and mechanism behind the anti-oxidative effects of herbal extract Moutan Cortex Radicis.

Inhibitory Effects of Filiform Acupuncture and Laser Acupuncture at the Points of Zhongzhu($TE_3$).Zulinqi($GB_{41}$) on Neuropathic Pain in the Tibial and Sural Nerve Injury-induced Rats (중저(中渚)($TE_3$).임입(臨泣)($GB_{41}$) 침자 및 레이저침이 백서의 Tibial Nerve와 Sural Nerve 유발 동통 억제에 미치는 영향)

  • Lee, Ju Hee;Lee, Dong Geun;Lee, Ook Jae;Lee, Sang Hyun;Lee, Jung Hun;Jeong, Joo Yong;Cheong, Min Seong;Yang, Tae Jun;Kim, Seon Wook;Cho, Myoung Rae
    • Journal of Acupuncture Research
    • /
    • v.31 no.2
    • /
    • pp.119-134
    • /
    • 2014
  • Objectives : The purpose of this study was to investigate the analgesic effects of filiform acupuncture and laser acupuncture at the points of $TE_3{\cdot}GB_{41}$ in neuropathic pain induced rats. Methods : Neuropathic pain in rats was induced by partial resection of the tibial and sural nerves. Three weeks after the neuropathic surgery, each of the experimental groups(AT, LAT, AT + LAT and LAT + AT) was injected at the $TE_3{\cdot}GB_{41}$ twice per week for three weeks. Results : 1. All of the experimental groups(AT, LAT, AT + LAT and LAT + AT) showed a significant decrease in the plantar withdrawal response of allodynia and the thermal allodynia as compared with the control group. During the early phase, the AT and AT + LAT groups have been marked as more significant than the LAT + AT and LAT groups. 2. The expression of c-Fos significantly decreased in the LAT and LAT + AT groups as compared with the control group. 3. The LAT + AT group showed a significant decrease in Bax as compared with the control group. In each experimental groups(AT, LAT, AT + LAT and LAT + AT), Bcl-2 increased and Bax/Bcl-2 ratio decreased as compared with the control group. 4. The LAT, AT + LAT and LAT + AT groups showed a significant increase in mGluR5 as compared with the control group. Conclusions : These results represented that the filiform acupuncture and laser acupuncture at the $TE_3{\cdot}GB_{41}$ exerted anti-apoptotic and neuroprotective effects on the model of neuropathic pain, thereby suggesting that they should be available for decreasing mechanical allodynia.

Hexane-Soluble Fraction of the Common Fig, Ficus carica, Inhibits Osteoclast Differentiation in Murine Bone Marrow-Derived Macrophages and RAW 264.7 Cells

  • Park, Young-Ran;Eun, Jae-Soon;Choi, Hwa-Jung;Nepal, Manoj;Kim, Dae-Keun;Seo, Seung-Yong;Li, Rihua;Moon, Woo-Sung;Cho, Nam-Pyo;Cho, Sung-Dae;Bae, Tae-Sung;Kim, Byung-Il;Soh, Yun-Jo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.13 no.6
    • /
    • pp.417-424
    • /
    • 2009
  • Osteoclasts, derived from multipotent myeloid progenitor cells, play homeostatic roles in skeletal modeling and remodeling, but may also destroy bone in pathological conditions such as osteoporosis and rheumatoid arthritis. Osteoclast development depends critically on a differentiation factor, the receptor activator of NF-${\kappa}B$ ligand (RANKL). In this study, we found that the hexane soluble fraction of the common fig Ficus carica (HF6-FC) is a potent inhibitor of osteoclastogenesis in RANKL-stimulated RAW264.7 cells and in bone marrow-derived macrophages (BMMs). HF6-FC exerts its inhibitory effects by suppression of p38 and NF-${\kappa}B$ but activation of ERK. In addition, HF6-FC significantly decreased the expression of NFATc1 and c-Fos, the master regulator of osteoclast differentiation. The data indicate that components of HF6-FC may have therapeutic effects on bone-destructive processes such as osteoporosis, rheumatoid arthritis, and periodontal bone resorption.

Panax ginseng exerts antidepressant-like effects by suppressing neuroinflammatory response and upregulating nuclear factor erythroid 2 related factor 2 signaling in the amygdala

  • Choi, Jong Hee;Lee, Min Jung;Jang, Minhee;Kim, Hak-Jae;Lee, Sanghyun;Lee, Sang Won;Kim, Young Ock;Cho, Ik-Hyun
    • Journal of Ginseng Research
    • /
    • v.42 no.1
    • /
    • pp.107-115
    • /
    • 2018
  • Background: Depression is one of the most commonly diagnosed neuropsychiatric diseases, but the underlying mechanism and medicine are not well-known. Although Panax ginseng has been reported to exert protective effects in various neurological studies, little information is available regarding its antidepressant effects. Methods: Here, we examined the antidepressant effect and underlying mechanism of P. ginseng extract (PGE) in a chronic restraint stress (CRS)-induced depression model in mice. Results: Oral administration of PGE for 14 d decreased immobility (depression-like behaviors) time in forced swim and tail suspended tests after CRS induction, which corresponded with attenuation of the levels of serum adrenocorticotropic hormone and corticosterone, as well as attenuated c-Fos expression in the amygdala. PGE enhanced messenger RNA expression level of brain-derived neurotrophic factor but ameliorated microglial activation and neuroinflammation (the level of messenger RNA and protein expression of cyclooxygenase-2 and inducible nitric oxide synthase) in the amygdala of mice after CRS induction. Interestingly, 14-d treatment with celecoxib, a selective cyclooxygenase-2 inhibitor, and $N_{\omega}$-nitro-L-arginine methyl ester hydrochloride, a selective inducible nitric oxide synthase inhibitor, attenuated depression-like behaviors after CRS induction. Additionally, PGE inhibited the upregulation of the nuclear factor erythroid 2 related factor 2 and heme oxygenase-1 pathways. Conclusion: Taken together, our findings suggest that PGE exerts antidepressant-like effect of CRS-induced depression by antineuroinflammatory and antioxidant (nuclear factor erythroid 2 related factor 2/heme oxygenase-1 activation) activities by inhibiting the hypothalamo-pituitary-adrenal axis mechanism. Further studies are needed to evaluate the potential of components of P. ginseng as an alternative treatment of depression, including clinical trial evaluation.