• Title/Summary/Keyword: cable stiffness

Search Result 7, Processing Time 0.068 seconds

Effect of cable stiffness on a cable-stayed bridge

  • Wang, Yang-Cheng
    • Structural Engineering and Mechanics
    • /
    • v.8 no.1
    • /
    • pp.27-38
    • /
    • 1999
  • Cables are used in many applications such as cable-stayed bridges, suspension bridges, transmission lines, telephone lines, etc. Generally, the linear relationship is inadequate to present the behavior of cable structure. In finite element analysis, cables have always been modeled as truss elements. For these types of model, the nonlinear behavior of cables has been always ignored. In order to investigate the importance of the nonlinear effect on the structural system, the effect of cable stiffness has been studied. The nonlinear behavior of cable is due to its sag. Therefore, the cable pretension provides a large portion of the inherent stiffness. Since a cable-stayed bridge has numerous degrees of freedom, analytical methods at present are not convenient to solve this type of structures but numerical methods may be feasible. It is necessary to provide a different and more representative analytical model in order to present the effect of cable stiffness on cable-stayed bridges in numerical analysis. The characteristics of cable deformation have also been well addressed. A formulation of modified modulus of elasticity has been proposed using a numerical parametric study. In order to investigate realistic bridges, a cable-stayed bridge having the geometry similar to that of Quincy Bayview Bridge is considered. The numerical results indicate that the characteristics of the cable stiffness are strongly nonlinear. It also significantly affects the structural behaviors of cable-stayed bridge systems.

Analysis of dry friction hysteresis in a cable under uniform bending

  • Huang, Xiaolun;Vinogradov, Oleg
    • Structural Engineering and Mechanics
    • /
    • v.2 no.1
    • /
    • pp.63-80
    • /
    • 1994
  • A cable is considered as a system of helical wires and a core with distributed dry friction forces at their interfaces. Deformations of the cable subjected to a uniform bending are analyzed. It is shown that there is a critical bending curvature when a slip at the wire-core interface occurs. It originates at the neutral axis of the cross section of the cable and then spreads symmetrically over the cross section with the increase of bending. The effect of slippage on the cable stiffness is investigated. This model is also used to analyze a cable under the quasi-static cyclic bending. Explicit expression for the hysteretic losses per cycle of bending is derived. Numerical examples are given to show the influence of dry friction and helix angle on the bending stiffness and hysteretic losses in the cable.

Analysis of thermally induced vibration of cable-beam structures

  • Deng, Han-Qing;Li, Tuan-Jie;Xue, Bi-Jie;Wang, Zuo-Wei
    • Structural Engineering and Mechanics
    • /
    • v.53 no.3
    • /
    • pp.443-453
    • /
    • 2015
  • Cable-beam structures characterized by variable stiffness nonlinearities are widely found in various structural engineering applications, for example in space deployable structures. Space deployable structures in orbit experience both high temperature caused by sun's radiation and low temperature by Earth's umbral shadow. The space temperature difference is above 300K at the moment of exiting or entering Earth's umbral shadow, which results in structural thermally induced vibration. To understand the thermally induced oscillations, the analytical expression of Boley parameter of cable-beam structures is firstly deduced. Then, the thermally induced vibration of cable-beam structures is analyzed using finite element method to verify the effectiveness of Boley parameter. Finally, by analyzing the obtained numerical results and the corresponding Boley parameters, it can be concluded that the derived expression of Boley parameter is valid to evaluate the occurrence conditions of thermally induced vibration of cable-beam structures and the key parameters influencing structural thermal flutter are the cable stiffness and thickness of beams.

Design strategy of hybrid stay cable system using CFRP and steel materials

  • Xiong, Wen;Cai, C.S.;Xiao, Rucheng;Zhang, Yin
    • Steel and Composite Structures
    • /
    • v.13 no.1
    • /
    • pp.47-70
    • /
    • 2012
  • To enhance cable stiffness, this paper proposed a combined application of carbon fiber reinforced polymers (CFRP) and steel materials, resulting in a novel type of hybrid stay cable system especially for the cable-stayed bridges with main span lengths of 1400~2800 m. In this combination, CFRP materials can conserve all their advantages such as light weight and high strength; while steel materials help increase the equivalent stiffness to compensate for the low elastic modulus of CFRP materials. An increase of the equivalent stiffness of the hybrid stay cable system could be further obtained with a reasonable increase of its safety factor. Following this concept, a series of parametric studies for the hybrid stay cable system with the consideration of stiffness and cost were carried out. Three design strategies/criteria, namely, best equivalent stiffness with a given safety factor, highest ratio of equivalent stiffness to material cost with a given safety factor, and best equivalent stiffness under a given cost were proposed from the stiffness and cost viewpoints. Finally, a comprehensive design procedure following the proposed design strategies was suggested. It was shown that the proposed hybrid stay cable system could be a good alternative to the pure CFRP or traditional steel stay cables in the future applications of super long span bridges.

Experimental study on the cable rigidness and static behaviors of AERORail structure

  • Li, Fangyuan;Wu, Peifeng;Liu, Dongjie
    • Steel and Composite Structures
    • /
    • v.12 no.5
    • /
    • pp.427-444
    • /
    • 2012
  • This paper presented a new aerial platform-AERORail for rail transport and its structure evolution based on the elastic stiffness of cable; through the analysis on the cable properties when the cable supported a small service load with high-tensile force, summarized the theoretical basis of the AERORail structure and the corresponding simplified analysis model. There were 60 groups of experiments for a single naked cable model under different tensile forces and different services loads, and 48 groups of experiments for the cable with rail combined structure model. The experimental results of deflection characteristics were compared with the theoretical values for these two types of structures under the same conditions. It proved that the results almost met the classical cable theory. The reason is that a small deflection was required when this structure was applied. After the tension increments tests with moving load, it is verified that the relationships between the structure stiffness and tension force and service load are simple. Before further research and applications are made, these results are necessary for the determination of the reasonable and economic tensile force, allowable service load for the special span length for this new platform.

Equivalent Suspension Bridge Model for Tower Design of Multi-span Suspension Bridges (다경간 현수교 주탑 설계를 위한 등가 현수교 모델)

  • Choi, Dong-Ho;Na, Ho-Sung;Yi, Ji-Yop;Gwon, Sun-Gil
    • Journal of Korean Society of Steel Construction
    • /
    • v.23 no.6
    • /
    • pp.669-677
    • /
    • 2011
  • The multi-span suspension bridge generally has more than three towers and two main spans. To economically and effectively design a multi-span suspension bridge, the proper stiffness ratio of the center tower to the side tower must be determined. This study was conducted to propose a method of figuring out briefly the structural behavior of the towers in a multi-span suspension bridge. In the equivalent suspension bridge model, the main cable of the multi-span suspension bridge is idealized as an equivalent cable spring, and the external loads of horizontal and vertical forces that were calculated using the tensile forces of the main cable were applied on top of the towers. The equilibrium equations of the equivalent multi-span suspension bridge model were derived and the equations were solved via nonlinear analysis. To verify the proposed method, a sample four-span suspension bridge with a main span length of 3,000 m was analyzed using thefinite element method. The displacements and moment reactions of each tower in the proposed method were compared with the FEM analysis results. Consequently, the results of the analysis of the equivalent suspension bridge model tended to be consistent with the results of the FEM analysis.

A Study on Dynamic Behaviour of Cable-Stayed Bridge by Vehicle Load (차량하중에 의한 사장교의 동적거동에 관한 연구)

  • Park, Cheun Hyek;Han, Jai Ik
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.14 no.6
    • /
    • pp.1299-1308
    • /
    • 1994
  • This paper is considered on the dynamic behavior and the dynamic impact coefficient on the cable-stayed bridge under the vehicle load. The method of static analysis, that is, the transfer matrix method is used to get influence values about displacements, section forces of girder and cable forces. Gotten influence values were used as basic data to analyse dynamic behavior. This paper used the transfer matrix method because it is relatively simpler than the finite element method, and calculating speed of computer is very fast and the precision of computation is high. In the process of dynamic analysis, the uncoupled equation of motion is derived from simultaneous equation of the motion of cable-stayed bridge and vehicle travelling by using mode shape, which was borne from system of undamped free vibration. The solution of the uncoupled equation of motion, that is, time history of response of deflections, velocity and acceleration on reference coordinate system, is found by Newmark-${\beta}$ method, a kind of direct integral method. After the time history of dynamic response was gotten, and it was transfered to the time history of dynamic response of cable-stayed bridge by linear transformation of coordinates. As a result of this numerical analysis, effect of dynamic behavior for cable-stayed bridge under the vehicle load has varied depending on parameter of design, that is, the ratio of span, the ratio of main span length, tower height, the flexural rigidity of longitudinal girder, the flexural rigidity of tower, and the cable stiffness, investigated. Very good agreements with the existing solution in the literature are shown for the uncracked plate as well as the cracked plate.

  • PDF