• 제목/요약/키워드: cable stiffness

검색결과 190건 처리시간 0.022초

Rapid assessment of suspension bridge deformation under concentrated live load considering main beam stiffness: An analytical method

  • Wen-ming Zhang;Jia-qi Chang;Xing-hang Shen;Xiao-fan Lu;Tian-cheng Liu
    • Structural Engineering and Mechanics
    • /
    • 제88권1호
    • /
    • pp.53-65
    • /
    • 2023
  • With the gradual implementation of long-span suspension bridges into high-speed railway operations, the main beam's bending stiffness contribution to the live load response permanently grows. Since another critical control parameter of railway suspension bridges is the beam-end rotation angle, it should not be ignored by treating the main beam deflection as the only deformation response. To this end, the current study refines the existing method of the main cable shape and simply supported beam bending moment analogy. The bending stiffness of the main beam is considered, and the main beam's analytical expressions of deflection and rotation angle in the whole span are obtained using the cable-beam deformation coordination relationship. Taking a railway suspension bridge as an example, the effectiveness and accuracy of the proposed analytical method are verified by the finite element method (FEM). Comparison of the results by FEM and the analytical method ignoring the main beam stiffness revealed that the bending stiffness of the main beam strongly contributed to the live load response. Under the same live load, as the main beam stiffness increases, the overall deformation of the structure decreases, and the reduction is particularly noticeable at locations with original larger deformations. When the main beam stiffness is increased to a certain extent, the stiffening effect is no longer pronounced.

번들 사장교 가설 구조물 설계력 산정을 위한 버페팅해석 (Buffeting Analysis for the Evaluation of Design Force for Temporal Supports of a Bundle Type Cable-stayed Bridge)

  • 이호;박진;김호경
    • 한국전산구조공학회논문집
    • /
    • 제24권6호
    • /
    • pp.645-654
    • /
    • 2011
  • 복층거더 번들형 사장교의 대블럭 가설 중 내풍안정성 확보를 위해 잭업바지 위에 임시벤트를 설치하여 가설 구조계를 지지하는 방안이 검토되었다. 일반적으로 거스트 계수를 곱한 정적 항력으로 임시벤트를 설계하는 경우 거더의 버페팅력에 의해 발생되는 임시벤트의 축력 변동성분을 고려할 수 없으며, 이는 일부 설계기준에 제시된 정적 상향 풍력으로도 평가할 수 없다. 유용한 해결 방안으로 주파수영역 버페팅해석을 수행하고 임시벤트에 작용하는 거더의 반력을 산정하였다. 우선 임시벤트를 해석 모델에 포함하고 거더와의 동적 상호작용을 엄밀히 반영하는 해석을 수행하였으며, 그 결과를 임시벤트가 거더를 받치는 고정 지지점으로 간주하여 해석한 경우의 결과와 비교 검토하였다. 임시벤트의 강성을 고려하는 경우 산정된 임시벤트와 거더 간 작용력은 임시벤트를 고정 지지점으로 간주하여 얻은 반력에 비하여 작은 값을 보였다. 따라서 대상교량의 가설 구조물 내풍설계를 수행하는 경우 임시벤트가 포함된 해석 모델링의 필요성과 버페팅해석을 통한 동적내풍 설계의 유용성을 제시하였다.

Free vibrations of a two-cable network inter-supported by cross-links extended to ground

  • Zhou, H.J.;Wu, Y.H.;Li, L.X.;Sun, L.M.;Xing, F.
    • Smart Structures and Systems
    • /
    • 제23권6호
    • /
    • pp.653-667
    • /
    • 2019
  • Using cross-ties to connect cables together when forming a cable network is regarded as an efficient method of mitigating cable vibrations. Cross-ties have been extended and fixed on bridge decks or towers in some engineering applications. However, the dynamics of this kind of system need to be further studied, and the effects of extending cross-links to bridge decks/towers on the modal response of the system should be assessed in detail. In this paper, a system of two cables connected by an inter-supported cross-link with another lower cross-link extended to the ground is proposed and analyzed. The characteristic equation of the system is derived, and some limiting solutions in closed form of the system are derived. Roots of cable system with special configurations are also discussed, attention being given to the case when the two cables are identical. A predictable mode behavior was found when the stiffness of inter-connection cross-link and the cross-link extended to the ground were the same. The vector of mode energy distribution and the degree of mode localization index are proposed so as to distinguish global and local modes. The change of mode behaviors is further discussed in the case when the two cables are not identical. Effects of cross-link stiffness, cross-link location, mass-tension ratio, cable length ratio and frequency ratio on $1^{st}$ mode frequency and mode shape are addressed.

Analytical study on cable shape and its lateral and vertical sags for earth-anchored suspension bridges with spatial cables

  • Gen-min Tian;Wen-ming Zhang;Jia-qi Chang;Zhao Liu
    • Structural Engineering and Mechanics
    • /
    • 제87권3호
    • /
    • pp.255-272
    • /
    • 2023
  • Spatial cable systems can provide more transverse stiffness and torsional stiffness without sacrificing the vertical bearing capacity compared with conventional vertical cable systems, which is quite lucrative for long-span earth-anchored suspension bridges' development. Higher economy highlights the importance of refined form-finding analysis. Meanwhile, the internal connection between the lateral and vertical sags has not yet been specified. Given this, an analytic algorithm of form-finding for the earth-anchored suspension bridge with spatial cables is proposed in this paper. Through the geometric compatibility condition and mechanical equilibrium condition, the expressions for cable segment, the recurrence relationship between catenary parameters and control equations of spatial cable are established. Additionally, the nonlinear general reduced gradient method is introduced into fast and high-precision numerical analysis. Furthermore, the analytic expression of the lateral and vertical sags is deduced and discussed. This is very significant for the space design above the bridge deck and the optimization of the sag-to-span ratio in the preliminary design stage of the bridge. Finally, the proposed method is verified with the aid of two examples, one being an operational self-anchored suspension bridge (with spatial cables and a 260 m main span), and the other being an earth-anchored suspension bridge under design (with spatial cables and a 500 m main span). The necessity of an iterative calculation for hanger tensions on earth-anchored suspension bridges is confirmed. It is further concluded that the main cable and their connected hangers are in very close inclined planes.

Approximate calculation of the static analysis of a lifted stay cable in super-long span cable-stayed bridges

  • Zhao, Xinwei;Xiao, Rucheng;Sun, Bin
    • Structural Engineering and Mechanics
    • /
    • 제74권5호
    • /
    • pp.635-655
    • /
    • 2020
  • The sag effect of long stay cables is one of the key factors restricting further increase in the span of cable-stayed bridges. Based on the formerly proposed concept of long stay cables lifted by an auxiliary suspension cable in cross-strait cable-stayed bridges, corresponding static approximate calculations and analytical theory based on catenary and parabolic cable configurations are established. Taking a main span 1400 m cable-stayed bridge as the research object, three typical lifting conditions and the whole process of auxiliary cable lifting are analyzed and discussed. The results show that the sag effect is effectively reduced. The support efficiency is only improved when the cables are lifted above the original cable chord. Reduction of the horizontal component force of the cable is limited. The equivalent elastic modulus and the vertical support stiffness of the lifted cables are significantly increased with increased horizontal projection length and not sensitive to the change of the lifting point position. The scheme of lifting the cable to the chord midpoint is more economical because of the less steel required for the auxiliary suspension cable, but its effect on improving the vertical support efficiency is limited. The support efficiency is better when the cable is lifted to the cable end tangential to the original cable chord, but the lifting force and the cross-sectional area of the auxiliary suspension cable are doubled. The approximate calculation results of the lifted cables are very close to the numerical analysis results, which verifies the applicability of the approximation method proposed in this study. The results of parabolic approximation calculations are approximately equal to that of catenary cable geometry. As the parabolic approximation analysis theory of lifted cables is more convenient in mathematical processing, it is feasible to use parabolic approximation analysis theory as the analytical method for the conceptual design of lifted cables of super-long span cable-stayed bridges.

기하 비선형성을 엄밀히 고려한 비선형 프레임-케이블요소의 정식화 (Lagrangian Formulation of a Geometrically Exact Nonlinear Frame-Cable Element)

  • 정명락;민동주;김문영
    • 한국전산구조공학회논문집
    • /
    • 제25권3호
    • /
    • pp.195-202
    • /
    • 2012
  • 기하학적 비선형성을 고려한 두 개의 비선형 프레임요소의 co-rotational 정식화 과정을 제시한다. 운동학적으로 엄밀한 첫 번째 프레임요소는 변형된 상태의 총 변형성분으로부터 부재력을 산정하며, 정확한 접선강성행렬을 적용한다. 아울러 total Lagrangian 및 updated Lagrangian 정식화에 따른 첫 번째 요소의 엄밀한 접선강성행렬이 동일하다는 것을 보인다. 이에 반하여 두 번째 프레임요소는 절점과 절점사이의 변형을 무시하고 직선으로 가정하여 근사적인 접선강성행렬을 산정하고, 반복계산 시 증분변위로 부터 증분부재력을 구하여 총부재력을 산정한다. 두 개의 수치예제를 통해 첫 번째 프레임 요소가 기하비선형 거동을 추적하는데 있어서 더 정확하고 성능이 우수하다는 것을 입증한다. 특히 케이블부재의 비선형해석 예제를 통하여 첫 번째 프레임 요소가 휨강성을 고려한 케이블요소로 사용할 수 있음을 보인다.

케이블 스포크 휠 지붕 시스템의 비선형 거동 (Nonlinear Behaviors of Cable Spoke Wheel Roof Systems)

  • 박강근;이미향;박미진
    • 한국공간구조학회논문집
    • /
    • 제17권1호
    • /
    • pp.31-40
    • /
    • 2017
  • The objective of this study is to analysis the mechanical characteristics and nonlinear behaviors on the geometric nonlinear behavior of a cable spoke wheel roof system for long span lightweight roof structures. The weight of a cable spoke wheel roof dramatically can reduce and the cable roof system can easily make the required rigidity and shape by the sag ratio and pretension forces. Determining the pretension and initial sag of cable roof system is essential in a design process and the shape of roof is changed by pretension. The nonlinear behavior of flexible cable system has greatly an affect on the sag and pretension. This paper will be carried out analyzing and comparing the tensile forces and deflection of a cable spoke wheel system for the large span retractable roof, and analyzed to deflections and tensile forces by the post height of center hub. The double arrangement of a spoke wheel system with reverse curvature works more effectively as a load bearing system, the pretension can easily increase the structural stiffness. The cable truss system can carry vertical load in up and downward direction, and act effectively as load bearing elements.

스트랜드와 와이어 로프의 강성해석 및 최적화 (Stiffiness Analysis and Optimization of Strand and Wire Rope)

  • 허성필;양원호;성기득;조명래
    • 대한기계학회논문집A
    • /
    • 제24권5호
    • /
    • pp.1246-1253
    • /
    • 2000
  • Wire ropes are widely used in cable car, suspension bridge and elevator, etc. and there has been a growing need for ropes of large diameter. The theoretical procedures to obtain the stiffness coefficients of wire ropes, using previously reported theory, are programmed and the verification of the program is made. The effects of lay angle on the stiffness of strand are researched and comparisons on stiffness of rope are made according to the lay type. Axial stiffness optimization problems with coupling and torsional stiffness constraints are formulated and the effects of constraints on other stiffness coefficients on axial stiffness optimization are investigated.

프리스트레스트 콘크리트 사장교 정착부의 응력특성 (Stress Properties for Anchorage Zone of Cable Stayed Bridge Prestress Concrete)

  • 조병완;변윤주;최준혁;태기호
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2002년도 봄 학술발표회 논문집
    • /
    • pp.531-536
    • /
    • 2002
  • The design of anchorage zone in prestressed concrete cable stayed bridges is very important area due to the more accurate analysis is needed to estimate the behavior. In the study, since the cable anchorage zone in the prestressed concrete cable-stayed bridge is subject to a large amount of concentrated tendon forces, it shows very complicated stress distributions and causes a serious local cracks. Accordingly, It is necessary to investigate the parameters of affecting the stress distribution, such as the cable inclination, the position of anchor plate, the modeling method and the three dimensional effect. The tensile stress distribution of anchorage zone is compared to the actual design condition by varing the stiffness of spring element in the local modeling and an appropriate position of anchor plate is determined. These results would be elementary data to the stress state of anchorage zone and more efficient design.

  • PDF

조류력을 받는 해양케이블의 자유진동해석 (Free Vibrations of Ocean Cables under Currents)

  • 김문영;김남일;윤종윤
    • 한국해안해양공학회지
    • /
    • 제11권4호
    • /
    • pp.231-237
    • /
    • 1999
  • 다절점 케이블요소를 이용하여 조류하중을 받는 해양 케이블의 자유진동해석을 수행한다. 등매개 곡선 케이블요소(isoparametric cable element)의 접선강성행렬과 질량행렬을 유도하고, 하중증분법을 이용하여 지점 변위를 일으키고 자중, 부력, 그리고 조류력을 받는 케이블의 초기평형 상태를 결정한다. 초기의 정적평형상태를 기준으로 부가질량을 고려한 해양케이블의 자유진동해석을 수행한다. 수중케이블의 자유진동해석을 통하여 얻은 해석결과와 기존의 문헌의 결과를 비교, 검토함으로써 본 논문에서 제시한 이론 및 해석방법의 타당성을 입증한다.

  • PDF