• Title/Summary/Keyword: cable stiffness

Search Result 190, Processing Time 0.026 seconds

Geometrically Nonlinear Dynamic Analysis of Cable Domes (케이블 돔의 기하학적 비선형 동적해석)

  • 한상을;서준호;김종범
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2003.04a
    • /
    • pp.61-68
    • /
    • 2003
  • Cable domes deform very largely because of the characteristics of flexible hybrid system and pre-tension, and include geometrical non-linearity in those structural behavior. Especially wind load is more dominant than seismic loads, because cable domes are flexible structures whose stiffness is very small and self-weight is very light. Therefore, in this paper, Modified Stiffly Stable Method is applied to analyze the nonlinear dynamic behavior of cable domes and compared these results with ones of Newmark-β Method which is generally used. The Seoul Olympic Gymnastic Arena is taken as an numerical example and three kinds of models with giving each different intensity of pre-tension are selected. And dynamic nonlinear behavior of cable domes are analyzed by artificial spectrum of wind velocity wave which is similar to actual wind loads.

  • PDF

Seismic Protection of Cable-stayed Bridges Using LRB and MR Damper (납-고무받침과 자기유변유체 감쇠기를 이용한 사장교의 내진제어)

  • 정형조;박규식;이인원
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.11a
    • /
    • pp.241-245
    • /
    • 2003
  • This paper presents the LRB-based hybrid base isolation system employing additional semiactive control devices for seismic protection of cable-stayed bridges by examining the ASCE first generation benchmark problem for a cable-stayed bridge. In this study, ideal magnetorheological dampers (MRDs) are considered as additional semiactive control devices. Numerical simulation results show that the hybrid base isolation system is effective in reducing the structural responses of the benchmark cable-stayed bridge under the historical earthquakes considered. The simulation results also demonstrate that the hybrid base Isolation system employing semiactive MRDs is robust to the stiffness uncertainty of the structure. Therefore, the LRB-based hybrid base isolation system employing MRDs could be appropriate in real applications for full-scale civil infrastructures.

  • PDF

A Study on the Static Instability Behaviour of the Zetlin Type Cable Dome Structures (Zetlin형 케이블 돔 구조물의 정적 불안정 거동에 관한 연구)

  • 김형석;김승덕;강문명
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2002.10a
    • /
    • pp.541-548
    • /
    • 2002
  • Membrane, cable structure and membrane-cable structural system are more lighter than another common structural system, and these are able to be effectively build Lip spatial structures using axial stiffness. However when the load reach at critical load level, it might be happened snap-through or bifurcation according to the structure's shape, and these collapse mechanism should be very important in the design of structures. So, In this paper we study static instability of Zetlin-type cable dome, one of the hybrid cable dome. Moreover, as the unstable behavior of shell structures are very sensitive to the initial condition, we seek to find the effect of initial condition.

  • PDF

A Study on the Slipping Problem for Cable-Membrane Structures (케이블-막구조물의 요소이동(slip)에 관한 연구)

  • Kim, Jae-Yeol;Kang, Joo-Won;Park, Sang-Min
    • Journal of Korean Association for Spatial Structures
    • /
    • v.8 no.5
    • /
    • pp.95-105
    • /
    • 2008
  • The objective of this study is find out the stressed condition, slipped direction and slipped dimension when some elements of cable-membrane structures are slipped from it's initially designed coordinates by external loads as wind or non uniform load and so on. In order to search the slipped behaviors of cable-membrane structures, a ALE finite element formulation is introduced. In these procedures, a stiffness matrix related with ALE concept is formulated and a FE analysis program for cable-membrane structures with slipped elements is developed.

  • PDF

Guidelines of Designing LRB for a Seismically Excited Cable-Stayed Bridge (지진 하중을 받는 사장교를 위한 납고무 받침의 설계 기준 제안)

  • 이성진;박규식;김운학;이인원
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2003.09a
    • /
    • pp.326-333
    • /
    • 2003
  • Most long-span bridges such as a cable-stayed bridges have a number of long-period modes due to the flexibility, thus the design concept extending the natural period of structures using base isolation system may be difficult to use directly to these structures. But, the effectiveness of LRB for cable-stayed bridges is indicated in several papers. In this study, the guidelines of designing LRB for a seismically excited cable-stayed bridge using benchmark cable-stayed bridge are presented. The design properties of LRB are chosen that the design index(DI) is minimized or little changed for variation of properties. And the seismic performance of designed LRB is also investigated. The consequences show that the perforamnce of designed LRB is better than that of simply designed LRB for several history earthquakes. Moreover, the design properties of LRB are researched to several diffrent dominant frequency of earthquake. The results present that the plastic and elastic stiffness of LRB are affected by the dominant frequency of earthquake.

  • PDF

Impact of cable sag on the efficiency of an inertial mass damper in controlling stay cable vibrations

  • Wang, Zhi-hao;Gao, Hui;Xu, Yan-wei;Chen, Zheng-qing;Wang, Hao
    • Smart Structures and Systems
    • /
    • v.24 no.1
    • /
    • pp.83-94
    • /
    • 2019
  • Passive negative stiffness dampers (NSDs) that possess superior energy dissipation abilities, have been proved to be more efficient than commonly adopted passive viscous dampers in controlling stay cable vibrations. Recently, inertial mass dampers (IMDs) have attracted extensive attentions since their properties are similar to NSDs. It has been theoretically predicted that superior supplemental damping can be generated for a taut cable with an IMD. This paper aims to theoretically investigate the impact of the cable sag on the efficiency of an IMD in controlling stay cable vibrations, and experimentally validate superior vibration mitigation performance of the IMD. Both the numerical and asymptotic solutions were obtained for an inclined sag cable with an IMD installed close to the cable end. Based on the asymptotic solution, the cable attainable maximum modal damping ratio and the corresponding optimal damping coefficient of the IMD were derived for a given inertial mass. An electromagnetic IMD (EIMD) with adjustable inertial mass was developed to investigate the effects of inertial mass and cable sag on the vibration mitigation performance of two model cables with different sags through series of first modal free vibration tests. The results show that the sag generally reduces the attainable first modal damping ratio of the cable with a passive viscous damper, while tends to increase the cable maximum attainable modal damping ratio provided by the IMD. The cable sag also decreases the optimum damping coefficient of the IMD when the inertial mass is less than its optimal value. The theoretically predicted first modal damping ratio of the cable with an IMD, taking into account the sag generally, agrees well with that identified from experimental results, while it will be significantly overestimated with a taut-cable model, especially for the cable with large sag.

Transverse buckling analysis of spatial diamond-shaped pylon cable-stayed bridge based on energy approach

  • Zheng, Xing;Huang, Qiao;Zheng, Qing-gang;Li, Zhen
    • Structural Engineering and Mechanics
    • /
    • v.83 no.1
    • /
    • pp.123-134
    • /
    • 2022
  • The stability of cable-stayed bridges is an important factor considered during design. In recent years, the novel spatial diamond-shaped bridge pylon has shown its advantages in various aspects, including the static response and the stability performance with the development of cable-stayed bridge towards long-span and heavy-load. Based on the energy approach, this paper presents a practical calculation method of the completed state stability of a cable-stayed bridge with two spatial diamond-shaped pylons. In the analysis, the possible transverse buckling of the girder, the top pylon column, and the mid pylon columns are considered simultaneously. The total potential energy of the spatial diamond-shaped pylon cable-stayed bridge is calculated. And based on the principle of stationary potential energy, the transverse buckling coefficients and corresponding buckling modes are obtained. Furthermore, an example is calculated using the design parameters of the Changtai Yangtze River Bridge, a 1176 m cable-stayed bridge under construction in China, to verify the effectiveness and accuracy of the proposed method in practical engineering. The critical loads and the buckling modes derived by the proposed method are in good agreement with the results of the finite element method. Finally, cable-stayed bridges varying pylon and girder stiffness ratios and pylon geometric dimensions are calculated to discuss the applicability and advantages of the proposed method. And a further discussion on the degrees of the polynomial functions when assuming buckling modes are presented.

Vibrational Characteristics on the Cables in Cable Stayed Bridge (사장교 케이블의 진동거동 특성)

  • Sung, Ikhyun
    • Journal of the Society of Disaster Information
    • /
    • v.13 no.2
    • /
    • pp.249-257
    • /
    • 2017
  • Recently, a cable disconnection accident occurred due to a lightning strike at the Seohae Bridge located in Dangjin-Pyeongtaek City. This is a natural occurrence, but it is a recall that it is very important to review the safety issues due to the disconnection of cable bridges. In other words, the role of cables in cable bridges has a profound effect on the safety of the structure, and it has become necessary to grasp the effect on the entire structural system. The cable bridge is an economic bridge that builds the main tower and supports the bottom plate by cable. The influence of the cable is the main member, which is a big influence on the safety of the whole bridge system. In the cable-stayed bridge, the cables exhibit nonlinear behavior because of the change in sag, due to the dead weight of the cable, which occurs with changing tension in the cable resulting from the movement of the end points of the cable as the bridge is loaded. Modal analysis is conducted using the deformed dead-load tangent stiffness matrix. A new concept was presented by using divided a cable into several elements in order to study the effect of the cable vibration (both in-plane and swinging) on the overall bridge dynamics. The result of this study demonstrates the importance of cable vibration on the overall bridge dynamics.

Geometric nonlinear analysis of steel structures with external pretension using the multi-noded cable element (다절점 케이블요소를 이용한 외부 긴장된 강구조 시스템의 기하학적 비선형해석)

  • Lee, Jun Seok;Kim, Moon Young;Han, Man Yop;Kim, Sung Bo;Kim, Nak Kyung
    • Journal of Korean Society of Steel Construction
    • /
    • v.18 no.6
    • /
    • pp.727-735
    • /
    • 2006
  • In this paper, a geometric nonlinear analysis procedure of the beam-column element including multi-noded cable element in extension of companion paper (Kim et al., 2005) is presented. First, a stiffness matrix was derived about the beam-column element that considers the second effect of the initial force supposing the curved shape at each time-step, with Hermitian polynomials as the shape function. Second, the multi-noded cable element was also subjected to the tangent stiffness matrix. To verify the geometric nonlinearity of this newly developed multi-noded cable-truss element, the Innovative Prestressed Support (IPS) system using this theory was analysed by geometric nonlinear method and the results were compared with those produced by linear analysis.

Seismic performance and its favorable structural system of three-tower suspension bridge

  • Zhang, Xin-Jun;Fu, Guo-Ning
    • Structural Engineering and Mechanics
    • /
    • v.50 no.2
    • /
    • pp.215-229
    • /
    • 2014
  • Due to the lack of effective longitudinal constraint for center tower, structural stiffness of three-tower suspension bridge becomes less than that of two-tower suspension bridge, and therefore it becomes more susceptible to the seismic action. By taking a three-tower suspension bridge-the Taizhou Highway Bridge over the Yangtze River with two main spans of 1080 m as example, structural dynamic characteristics and seismic performance of the bridge is investigated, and the effects of cable's sag to span ratio, structural stiffness of the center tower, and longitudinal constraint of the girder on seismic response of the bridge are also investigated, and the favorable structural system is discussed with respect to seismic performance. The results show that structural response under lateral seismic action is more remarkable, especially for the side towers, and therefore more attentions should be paid to the lateral seismic performance and also the side towers. Large cable's sag, flexible center tower and the longitudinal elastic cable between the center tower and the girder are favorable to improve structural seismic performance of long-span three-tower suspension bridges.