• Title/Summary/Keyword: cable-stayed bridge

Search Result 538, Processing Time 0.024 seconds

Using cable finite elements to analyze parametric vibrations of stay cables in cable-stayed bridges

  • Wu, Qingxiong;Takahashi, Kazuo;Chen, Baochun
    • Structural Engineering and Mechanics
    • /
    • v.23 no.6
    • /
    • pp.691-711
    • /
    • 2006
  • This paper uses the finite element method to simultaneously consider the coupled cable-deck vibrations and the parametric vibrations of stay cables in dynamic analysis of a cable-stayed bridge. The stay cables are represented by some cable finite elements, which can consider the parametric vibration of the cables. In addition to modeling stay cables using multiple link cable elements, a procedure for removing the self-weight term of cable element is proposed. A eigenvalue analysis process using dynamic condensation method for sorting out the natural modes of the girder-tower vibrations and the Rayleigh damping considering element damping for damping matrix are also proposed for dynamic analyses of cable-stayed bridges. The possibilities of using cable elements and of using global and local vibrations to evaluate the parametric vibrations of stay cables in a cable-stayed bridge are confirmed, respectively.

A study on the Evolutionary Optimization of Cable Area of the Cable-Stayed Bridge (사장교 케이블 단면적의 점진적 최적화에 관한 연구)

  • 최창근;이태열;홍현석;김은성
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1996.10a
    • /
    • pp.113-120
    • /
    • 1996
  • This study presents the optimization technique to determine the cable areas of the cable-stayed bridge. The optimization method presented in this paper is based on an evolutionary procedure, in which the area of high stressed cable is increased step-by-step until an optimal area of the cable is obtained. A comparison between the maximum values of the present method and those of the cable-stayed bridge that has the same cable area shows the advantages of the present method.

  • PDF

Mechanics feasibility of using CFRP cables in super long-span cable-stayed bridges

  • Zhang, Xin-Jun
    • Structural Engineering and Mechanics
    • /
    • v.29 no.5
    • /
    • pp.567-579
    • /
    • 2008
  • To gain understanding of the applicability of CFRP cables in super long-span cable-stayed bridges, by taking a 1400 m cable-stayed bridge as example, mechanics performance including the static behavior under service load, dynamic behavior, wind stability and seismic behavior of the bridge using either steel or CFRP cables are investigated numerically and compared. The results show that viewed from the aspect of mechanics performance, the use of CFRP cables in super long-span cable-stayed bridges is feasible, and the cross-sectional areas of CFRP cables should be determined by the principle of equivalent axial stiffness.

Construction Method of Seohae Grand Bridge (서해대교 시공 공법 소개)

  • Yoon Tae Seob
    • Proceedings of the Korean Institute Of Construction Engineering and Management
    • /
    • autumn
    • /
    • pp.255-266
    • /
    • 2000
  • Since 1993, Seohae grand bridge has been continued construction for 7 years and will be completed late this year. The bridge is a part of west sea castal highway and consists of 3 types of bridge including precast segmental method, free cantilever method and cable stayed bridge. A cable stayed bridge is the core of this bridge and it consists of 5 span, symetrical cable-stayed bridge with a total length of 990 m. The main span between two H-shaped pylons extending approximately 180 M above massive foundation of a cable stayed bridge is 470 m long and an approach span of that is 260 m long respectively. The circular cofferdam with 16 ea of 25 m diameter flat type sheet pile had been applied to construct foundation. The slipform method had been applied for forming of con'c of two H-shaped pylons with 3 cross beams respectively which is varied horizontally and vertically. The deck has been erected with balanced cantilever method using movable derrick crane. The stay cables is a bundle of parallel individually protected, 7 wire high tensile strands. The strands is hot deep galvanized and sheathed with a tight high density polyethylene coating. A petroleum wax fills all the inter-wire voids. The bundle of strands to prevent from deterioration due to the ambient problem covered with high density polyethylene pipe. The Isotension method has been applied for the stressing of cable strands to ensure uniformity of force in all the strands of a syay and such works has been performed on the stay specially provided in the pylon.

  • PDF

Active mass damper control for cable stayed bridge under construction: an experimental study

  • Chen, Hao;Sun, Zhi;Sun, Limin
    • Structural Engineering and Mechanics
    • /
    • v.38 no.2
    • /
    • pp.141-156
    • /
    • 2011
  • A cable stayed bridge under construction has low structural damping and is not as stable as the completed bridge. Control countermeasures, such as the installation of energy dissipating devices, are thus required. In this study, the general procedure and key issues on adopting an active control device, the active mass damper (AMD), for vibration control of cable stayed bridges under construction were studied. Taking a typical cable stayed bridge as the prototype structure; a lab-scale test structure was designed and fabricated firstly. A baseline FEM model was then setup and updated according to the modal parameters measured from vibration test on the structure. A numerical study to simulate the bridge-AMD control system was conducted and an efficient LQG-based controller was designed. Based on that, an experimental implementation of AMD control of the transverse vibration of the bridge model was performed. The results from numerical simulation and experimental study verified that the AMD-based active control was feasible and efficient for reducing dynamic responses of a complex structural system. Moreover, the discussion made in this study clarified some critical problems which should be addressed for the practical implementation of AMD control on real cable-stayed bridges.

Analysis on Visual Preference of Bridge Landscapes of View Point Selection and Bridge Shape for Improvement of the Rural Landscape - A Case Study of the 'Baegya Bridge of Yeosu City in Jeollanam-do' (농어촌경관 향상을 위한 교량경관의 조망점 및 형태에 관한 경관선호도 분석 -전라남도 여수시 백야대교를 대상으로-)

  • Chun, Hyun-Jin;Lee, June;Jiang, Long;Kim, Sung-Kyun
    • Journal of Korean Society of Rural Planning
    • /
    • v.18 no.3
    • /
    • pp.57-65
    • /
    • 2012
  • This research is focus on the analysis of bridge image and preference. In this study, 3 types of bridge with arch bridge, cable stayed bridge, and suspension bridge, 4 prospect points named A, B, C, and D will be simulated in one scene for final analysis of bridge image and preference.On prospect point A, higher evaluation is received among the arch bridge. In addition, for cable stayed bridge and suspension bridge, the Higher evaluation is received among the most at the arch bridge on prospect point B. At the on prospect point C, higher evaluation is received among the most cable stayed bridge and suspension bridge compared with arch bridge. At the on prospect point D, lower evaluation is received among the cable stayed bridge and suspension bridge compared with arch bridge. The highest average total preference is received for cable stayed bridge. And, The lowest average total preference is received for arch bridge. Cable stayed bridge is suitable for the Baegya Bridge than arch bridge in the Landscape point. In conclusion, the preference for one bridge is not the same at different prospect points through above research.

Damage prevention and aerodynamics of cable-stayed bridges in heavy snowstorms: A case study

  • Mladen, Bulic;Mehmed, Causevic
    • Structural Engineering and Mechanics
    • /
    • v.85 no.1
    • /
    • pp.81-88
    • /
    • 2023
  • This paper begins by analyzing cable vibrations due to external excitations and their effects on the overall dynamic behavior of cable-stayed bridges. It is concluded that if the natural frequency of a cable approaches any natural frequency of the bridge, the cable loses its rigidity and functionality. The results of this analysis explain the phenomenon that occurred on the Dubrovnik Bridge in Croatia during a storm and measures for its retrofit. A field test was conducted before the bridge was opened to traffic. It was concluded: "The Bridge excited unpleasant transverse superstructure vibration with the frequency of approximately 0.470 Hz. Hence, it seems possible that a pair of stays vibrating in phase may excite deck vibrations". Soon after this Bridge opened, a storm dumped heavy damp snow in the area, causing the six longest cable stay pairs of the main span to undergo large-amplitude vibrations, and the superstructure underwent considerable displacements in combined torsion-sway and bending modes. This necessitated rehabilitation measures for the Bridge including devices to suppress the large-amplitude vibrations of cables. The rehabilitation and monitoring of the Bridge are also presented here.

Design of aerodynamic stabilizing cables for a cable-stayed bridge during construction

  • Choi, Sung-Won;Kim, Ho-Kyung
    • Wind and Structures
    • /
    • v.11 no.5
    • /
    • pp.391-411
    • /
    • 2008
  • A design procedure of stabilizing cable is proposed using buffeting analysis to stabilize the seesaw-like motion of the free cantilevered structure of a cable-stayed bridge during its construction. The bridge examined is a composite cable-stayed bridge having a main span length of 500 m. Based on the buffeting analysis, the stress in bare structure exceeded the allowable limit and a set of stabilizing cable was planned to mitigate the responses. The most efficient positions of the hold-down stabilizing cables were numerically investigated by means of an FE-based buffeting analysis and the required dimensions and pretension of the stabilizing cables were also calculated. The proposed stabilizing measure would be expected to secure the aerodynamic safety of a cantilevered structure under construction with considerable mitigation of buffeting responses.

Behavior of cable-stayed bridges under dynamic subsidence of pylons

  • Raftoyiannis, I.G.;Michaltsos, G.T.;Konstantakopoulos, T.G.
    • Interaction and multiscale mechanics
    • /
    • v.5 no.4
    • /
    • pp.317-345
    • /
    • 2012
  • Cable-stayed bridges are often used in modern bridge engineering for connecting two geographical points of long distance. A special load case to cable-stayed bridges is earthquake, which can produce horizontal as well as vertical movements on the pylons of the bridge. These movements may be transient in nature, i.e., only resulting in the transient vibration of the bridge, but causing no damage consequences. In some extreme cases, they may cause permanent subsidence on one or more pylons of the bridge. In this paper, the effect of pylons' subsidence on the dynamic deformations of the bridge and on the cables' strength is thoroughly studied. Conclusions useful to the design of cable-stayed bridges will be drawn from the numerical study.

Study of seismic performance of super long-span partially earth-anchored cable-stayed bridges

  • Zhang, Xin-Jun;Yu, Cong;Zhao, Jun-Jie
    • Structural Engineering and Mechanics
    • /
    • v.72 no.1
    • /
    • pp.99-111
    • /
    • 2019
  • To investigate the seismic performance of long-span partially earth-anchored cable-stayed bridge, a super long-span partially earth-anchored cable-stayed bridge scheme with main span of 1400m is taken as example, structural response of the bridge under E1 seismic action is investigated numerically by the multimode seismic response spectrum and time-history analysis, seismic behavior and also the effect of structural geometric nonlinearity on the seismic responses of super long-span partially earth-anchored cable-stayed bridges are revealed. The seismic responses are also compared to those of a fully self-anchored cable-stayed bridge with the same main span. The effects of structural parameters including the earth-anchored girder length, the girder width, the girder depth, the tower height to span ratio, the inclination of earth-anchored cables, the installation of auxiliary piers in the side spans and the connection between tower and girder on the seismic responses of partially ground-anchored cable-stayed bridges are investigated, and their reasonable values are also discussed in combination with static performance and structural stability. The results show that the horizontal seismic excitation produces significant seismic responses of the girder and tower, the seismic responses of the towers are greater than those of the girder, and thus the tower becomes the key structural member of seismic design, and more attentions should be paid to seismic design of these sections including the tower bottom, the tower and girder at the junction of tower and girder, the girder at the auxiliary piers in side spans; structural geometric nonlinearity has significant influence on the seismic responses of the bridge, and thus the nonlinear time history analysis is proposed to predict the seismic responses of super long-span partially earth-anchored cable-stayed bridges; as compared to the fully self-anchored cable-stayed bridge with the same main span, several stay cables in the side spans are changed to be earth-anchored, structural stiffness and natural frequency are both increased, the seismic responses of the towers and the longitudinal displacement of the girder are significantly reduced, structural seismic performance is improved, and therefore the partially earth-anchored cable-stayed bridge provides an ideal structural solution for super long-span cable-stayed bridges with kilometer-scale main span; under the case that the ratio of earth-anchored girder length to span is about 0.3, the wider and higher girder is employed, the tower height-to-span ratio is about 0.2, the larger inclination is set for the earth-anchored cables, 1 to 2 auxiliary piers are installed in each of the side spans and the fully floating system is employed, better overall structural performance is achieved for long-span partially earth-anchored cable-stayed bridges.