• Title/Summary/Keyword: cable-stayed bridge

Search Result 538, Processing Time 0.026 seconds

Structural Safety Analysis of a Long Span Cable-stayed Bridge with a Partially Earth Anchored Cable System on Dynamic Loads during Construction (일부타정식 케이블 시스템 장경간 사장교의 시공 중 동적 안전성 분석)

  • Won, Jeong-Hun;Kim, Gyeoung Yun
    • Journal of the Korean Society of Safety
    • /
    • v.31 no.4
    • /
    • pp.104-110
    • /
    • 2016
  • The effect of a partially earth anchored cable system on the structural safety of a long span cable-stayed bridge under seismic and wind loads are examined during construction process. By assuming the FCM (free cantilever method) construction stages with structural vulnerability, a multi-mode spectral analysis and a multi-mode buffeting analysis are performed for specific seismic load and wind load, respectively. Results show that the wind load dominates the structural safety of a cable-stayed bridge during construction. And, the application of a partially earth anchored cable system can enhance structural safety under wind load since the maximum pylon moment in the model with partially earth anchored cable system is reduced by 49% under wind load. In contrast, the maximum pylon moment occurred by seismic load is only decreased by 8%.

A Study on Controlling the Negative Reaction of Cable Stayed Bridge Considering Constructability and Economy : Vam Cong Cable Stayed Bridge in Vietnam (시공성 및 경제성을 고려한 사장교 부반력 제어 연구 : 베트남 밤콩 사장교 사례)

  • Lee, Yong-Jin;Lho, Byeong-Cheol;Kim, Chang-Kyo;Bae, Sang-Woon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.5
    • /
    • pp.87-95
    • /
    • 2014
  • Cable stayed bridge is supported by cables and the negative reaction occurs by cables at anchor pier. To solve this problem, the proper side span ratio and the negative reaction measure of anchor pier are needed. And structural system of cable stayed bridge is determined by solution of the negative reaction as installation of the intermediate pier, counterweight and so on. In feasibility study, Vam Cong bridge was planned as 5 span cable stayed bridge. However, it was changed to 3 span cable stayed bridge in detailed design because of constructability and economy. The intermediate pier was excluded in order to improve the constructability, and side span ratio increased to control the negative reaction. As a result, Vam Cong bridge secure constructability, structural safety, and efficiency.

Approximate calculation of the static analysis of a lifted stay cable in super-long span cable-stayed bridges

  • Zhao, Xinwei;Xiao, Rucheng;Sun, Bin
    • Structural Engineering and Mechanics
    • /
    • v.74 no.5
    • /
    • pp.635-655
    • /
    • 2020
  • The sag effect of long stay cables is one of the key factors restricting further increase in the span of cable-stayed bridges. Based on the formerly proposed concept of long stay cables lifted by an auxiliary suspension cable in cross-strait cable-stayed bridges, corresponding static approximate calculations and analytical theory based on catenary and parabolic cable configurations are established. Taking a main span 1400 m cable-stayed bridge as the research object, three typical lifting conditions and the whole process of auxiliary cable lifting are analyzed and discussed. The results show that the sag effect is effectively reduced. The support efficiency is only improved when the cables are lifted above the original cable chord. Reduction of the horizontal component force of the cable is limited. The equivalent elastic modulus and the vertical support stiffness of the lifted cables are significantly increased with increased horizontal projection length and not sensitive to the change of the lifting point position. The scheme of lifting the cable to the chord midpoint is more economical because of the less steel required for the auxiliary suspension cable, but its effect on improving the vertical support efficiency is limited. The support efficiency is better when the cable is lifted to the cable end tangential to the original cable chord, but the lifting force and the cross-sectional area of the auxiliary suspension cable are doubled. The approximate calculation results of the lifted cables are very close to the numerical analysis results, which verifies the applicability of the approximation method proposed in this study. The results of parabolic approximation calculations are approximately equal to that of catenary cable geometry. As the parabolic approximation analysis theory of lifted cables is more convenient in mathematical processing, it is feasible to use parabolic approximation analysis theory as the analytical method for the conceptual design of lifted cables of super-long span cable-stayed bridges.

BIM System Development for Conceptual Design and Pre-Feasibility Study of Cable-Stayed Bridge (BIM 기반 사장교의 개념설계 및 예가분석 시스템 개발)

  • Chun, Kyoung-Sik;Park, Won-Tae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.10
    • /
    • pp.7204-7210
    • /
    • 2015
  • This paper has developed the system for supporting the approximate construction cost and the quantity estimation based on 3D model information in the pre-project planning phase of 3-span continuous cable-bridge with 2-pylons. First of all, we'd analyzed the design information (structural design report, blueprint and quantity) of the existing cable-stayed bridges and derived the design variables of cable-stayed bridges. We developed the BIM wizard that generates a cable-stayed bridge model parametrically based on derived design variables. The principle material quantities of cable-stayed bridge are calculated directly from 3-dimensional bridge model built by using the BIM wizard. Then, we can estimate the construction cost in relation to its quantities and unit cost of cable-stayed bridge. In a result, we have established the system that the construction cost can be estimated more specific than the conventional method (construction estimates per meter or square meter). We hereby will be able to review various alternatives as soon as possible in bidding process.

Study of design parameters on flutter stability of cable-stayed bridges

  • Zhang, Xin-Jun;Sun, Bing-Nan
    • Wind and Structures
    • /
    • v.6 no.4
    • /
    • pp.279-290
    • /
    • 2003
  • Flutter stability is one of major concerns on the design of long-span cable-stayed bridges. Considering the geometric nonlinearity of cable-stayed bridges and the effects due to the nonlinear wind-structure interactions, a nonlinear method is proposed to analyze the flutter stability of cable-stayed bridges, and a computer program NFAB is also developed. Taking the Jingsha bridge over the Yangtze River as example, parametric analyses on flutter stability of the bridge are carried out, and some important design parameters that affect the flutter stability of cable-stayed bridges are pointed out.

Influence of lateral motion of cable stays on cable-stayed bridges

  • Wang, P.H.;Liu, M.Y.;Huang, Y.T.;Lin, L.C.
    • Structural Engineering and Mechanics
    • /
    • v.34 no.6
    • /
    • pp.719-738
    • /
    • 2010
  • The aim of this paper concerns with the nonlinear analysis of cable-stayed bridges including the vibration effect of cable stays. Two models for the cable stay system are built up in the study. One is the OECS (one element cable system) model in which one single element per cable stay is used and the other is MECS (multi-elements cable system) model, where multi-elements per cable stay are used. A finite element computation procedure has been set up for the nonlinear analysis of such kind of structures. For shape finding of the cable-stayed bridge with MECS model, an efficient computation procedure is presented by using the two-loop iteration method (equilibrium iteration and shape iteration) with help of the catenary function method to discretize each single cable stay. After the convergent initial shape of the bridge is found, further analysis can then be performed. The structural behaviors of cable-stayed bridges influenced by the cable lateral motion will be examined here detailedly, such as the static deflection, the natural frequencies and modes, and the dynamic responses induced by seismic loading. The results show that the MECS model offers the real shape of cable stays in the initial shape, and all the natural frequencies and modes of the bridge including global modes and local modes. The global mode of the bridge consists of coupled girder, tower and cable stays motion and is a coupled mode, while the local mode exhibits only the motion of cable stays and is uncoupled with girder and tower. The OECS model can only offers global mode of tower and girder without any motion of cable stays, because each cable stay is represented by a single straight cable (or truss) element. In the nonlinear seismic analysis, only the MECS model can offer the lateral displacement response of cable stays and the axial force variation in cable stays. The responses of towers and girders of the bridge determined by both OECS- and MECS-models have no great difference.

Aerostatic load on the deck of cable-stayed bridge in erection stage under skew wind

  • Li, Shaopeng;Li, Mingshui;Zeng, Jiadong;Liao, Haili
    • Wind and Structures
    • /
    • v.22 no.1
    • /
    • pp.43-63
    • /
    • 2016
  • In conventional buffeting theory, it is assumed that the aerostatic coefficients along a bridge deck follow the strip assumption. The validity of this assumption is suspect for a cable-stayed bridge in the construction stages, due to the effect of significant aerodynamic interference from the pylon. This situation may be aggravated in skew winds. Therefore, the most adverse buffeting usually occurs when the wind is not normal to bridge axis, which indicates the invalidity of the traditional "cosine rule". In order to refine the studies of static wind load on the deck of cable-stayed bridge under skew wind during its most adverse construction stage, a full bridge 'aero-stiff' model technique was used to identify the aerostatic loads on each deck segment, in smooth oncoming flow, with various yaw angles. The results show that the shelter effect of the pylon may not be ignored, and can amplify the aerostatic loading on the bridge deck under skew winds ($10^{\circ}-30^{\circ}$) with certain wind attack angles, and consequently results in the "cosine rule" becoming invalid for the buffeting estimation of cable-stayed bridge during erection for these wind directions.

Stability analysis of steel cable-stayed bridges

  • Tang, Chia-Chih;Shu, Hung-Shan;Wang, Yang-Cheng
    • Structural Engineering and Mechanics
    • /
    • v.11 no.1
    • /
    • pp.35-48
    • /
    • 2001
  • The objective of this study is to investigate the stability behavior of steel cable-stayed bridges by comparing the buckling loads obtained by means of finite element methods with eigen-solver. In recent days, cable-stayed bridges dramatically attract engineers' attention due to their structural characteristics and aesthetics. They require a number of design parameters and present a high degree of static indetermination, especially for long span bridges. Cable-stayed bridges exhibit several nonlinear behaviors concurrently under normal design loads due to the individual nonlinearity of substructures such as the pylons, stay cables, and bridge deck, and their interactions. The geometric nonlinearities arise mainly from large displacements of cables. Strong axial and lateral forces acting on the bridge deck and pylons cause structural nonlinear behaviors. The interaction is among the substructures. In this paper, a typical three-span steel cable-stayed bridge with a variety of design parameters has been investigated. The numerical results indicate that the design parameters such as the ratio of $L_1/L$ and $I_p/I_b$ are important for the structural behavior, where $L_1$ is the main span length, L is the total span length of the bridge, $I_p$ is the moment of inertia of the pylon, and $I_b$ is the moment of inertia of the bridge deck. When the ratio $I_p/I_b$ increases, the critical load decreases due to the lack of interaction among substructures. Cable arrangements and the height of pylon are another important factors for this type of bridge in buckling analysis. According to numerical results, the bridges supported by a pylon with harp-type cable arrangement have higher critical loads than the bridges supported by a pylon with fan-type cable arrangement. On contrary, the shape of the pylon does not significantly affect the critical load of this type of bridge. All numerical results have been non-dimensionalized and presented in both tabular and graphical forms.

Earthquake response of isolated cable-stayed bridges under spatially varying ground motions

  • Ates, Sevket;Soyluk, Kurtulus;Dumanoglu, A. Aydin;Bayraktar, Alemdar
    • Structural Engineering and Mechanics
    • /
    • v.31 no.6
    • /
    • pp.639-662
    • /
    • 2009
  • A comprehensive investigation of the stochastic response of an isolated cable-stayed bridge subjected to spatially varying earthquake ground motion is performed. In this study, the Jindo Bridge built in South Korea is chosen as a numerical example. The bridge deck is assumed to be continuous from one end to the other end. The vertical movement of the stiffening girder is restrained and freedom of rotational movement on the transverse axis is provided for all piers and abutments. The longitudinal restraint is provided at the mainland pier. The A-frame towers are fixed at the base. To implement the base isolation procedure, the double concave friction pendulum bearings are placed at each of the four support points of the deck. Thus, the deck of the cable-stayed bridge is isolated from the towers using the double concave friction pendulum bearings which are sliding devices that utilize two spherical concave surfaces. The spatially varying earthquake ground motion is characterized by the incoherence and wave-passage effects. Mean of maximum response values obtained from the spatially varying earthquake ground motion case are compared for the isolated and non-isolated bridge models. It is pointed out that the base isolation of the considered cable-stayed bridge model subjected to the spatially varying earthquake ground motion significantly underestimates the deck and the tower responses.

Development of BIM-based bridge maintenance system for cable-stayed bridges

  • Shim, Chang-su;Kang, Hwirang;Dang, Ngoc Son;Lee, Deokkeun
    • Smart Structures and Systems
    • /
    • v.20 no.6
    • /
    • pp.697-708
    • /
    • 2017
  • Maintenance plays a critical role in the bridge industry, but actual practices show many limitations because of traditional, 2D-based information systems. It is necessary to develop a new generation of maintenance information management systems for more reliable decision making in bridge maintenance. Enhancing current work processes requires a BIM-based 3D digital model that can use information from the whole lifecycle of a project (design, construction, operation, and maintenance) through continuous exchanges and updates from each stakeholder. This study describes the development of a data scheme for maintenance of cable-stayed bridges. We implemented the proposed system for a cable-stayed bridge and discussed its effectiveness.