• Title/Summary/Keyword: calcite

Search Result 624, Processing Time 0.026 seconds

Effect of reaction temperature and time on the formation of calcite precipitation of recycled concrete aggregate (RCA) for drainage applications

  • Boo Hyun Nam;Jinwoo An;Toni Curate
    • Geomechanics and Engineering
    • /
    • v.33 no.1
    • /
    • pp.65-75
    • /
    • 2023
  • Recycled concrete aggregate (RCA) is widely used as a construction material in road construction, concrete structures, embankments, etc. However, it has been reported that calcite (CaCO3) precipitation from RCA can be a cause of clogging when used in drainage applications. An accelerated calcite precipitation (ACP) procedure has been devised to evaluate the long-term geochemical performance of RCA in subsurface drainage systems. While the ACP procedure was useful for the French Drain application, there remained opportunities for improvement. In this study, key factors that control the formation of calcite precipitation were quantitatively evaluated, and the results were used to improve the current prototype ACP method. A laboratory parametric study was carried out by investigating the effects of reaction temperature and time on the formation of calcite precipitation of RCA, with determining an optimum reaction temperature and time which maximizes calcite precipitation. The improved ACP procedure was then applied to RCA samples that were graded for Type I Underdrain application, to compare the calcite precipitation. Two key findings are (1) that calcite precipitation can be maximized with the optimum heating temperature (75℃) and time (17 hours), and (2) the potential for calcite precipitation from RCA is not as significant as for limestone. With the improved ACP procedure, the total amount of calcite precipitation from RCAs within the life cycle of a drain system can be determined when RCAs from different sources are used as pipe backfill materials in a drain system.

Evaluation of Various Synthesis Methods for Calcite-Precipitated Calcium Carbonate (PCC) Formation

  • Ramakrishna, Chilakala;Thenepalli, Thriveni;Ahn, Ji Whan
    • Korean Chemical Engineering Research
    • /
    • v.55 no.3
    • /
    • pp.279-286
    • /
    • 2017
  • This review paper evaluates different kinds of synthesis methods for calcite precipitated calcium carbonates by using different materials. The various processing routes of calcite with different compositions are reported and the possible optimum conditions required to synthesize a desired particle sizes of calcite are predicted. This paper mainly focuses on that the calcite morphology and size of the particles by carbonation process using loop reactors. In this regard, we have investigated various parameters such as $CO_2$ flow rate, Ca $(OH)_2$ concentration, temperature, pH effect, reaction time and loop reactor mechanism with orifice diameter. The research results illustrate the formation of well-defined and pure calcite crystals with controlled crystal growth and particle size, without additives or organic solvents. The crystal growth and particle size can be controlled, and smaller sizes are obtained by decreasing the Ca $(OH)_2$ concentration and increasing the $CO_2$ flow rate at lower temperatures with suitable pH. The crystal structure of obtained calcite was characterized by using X-ray diffraction method and the morphology by scanning electron microscope (SEM). The result of x-ray diffraction recognized that the calcite phase of calcium carbonate was the dominating crystalline structure.

Growth of calcite$(CaCO_3)$ single crystal by hydrothermal method (수열법에 의한 calcite$(CaCO_3)$ 단결정 성장)

  • Lee, Yeong-Guk;Yu, Yeong-Mun;Park, Ro-Hak
    • Korean Journal of Crystallography
    • /
    • v.7 no.1
    • /
    • pp.30-35
    • /
    • 1996
  • Calcite(CaCO3) single crystals were grown hydrothermally and transmittance of as grown crystals was measured. Instead of platinium, teflon was lined onto the wall of autoclave to prevent the corrosion of autoclave wall by acidic NH4Cl solution. Spontaneous nucleation and growth of calcite crystal on teflon was reduced considerably by addition of NaCl and /or CH3COOH and applying low temperature gradient. When the temperature gradient exceeded to a few degrees from the critical temperature gradient(6-7℃), spontaneous nucleation and growth was rapidly increased in any hydrothermal solutions. Precise temperature control is thought to be the most important factor for the growth of calcite single crystal by hydrothermal technique. As grown calcite single crytal showed high transmittance compared to natural one by UV-visible analysis.

  • PDF

Isolation and Characterization of Calcite Forming Bacteria from Various Environments in Korea (다양한 환경에서의 탄산칼슘 생성 균주 분리 및 특성 연구)

  • Kim, YongGyeong;Kang, Chang-Ho;Oh, Soo Ji;So, Jae-Seong
    • KSBB Journal
    • /
    • v.29 no.5
    • /
    • pp.323-327
    • /
    • 2014
  • Microbially induced calcite precipitation is a naturally occurring biological process in which microbes produce calcite on the surface of the microorganisms by urease activity. In order to collect calcite forming bacteria (CFB) in Korea, we isolated 343 putative CFB strains from various environments over three year period (2011~2013) and selected 100 CFB strains. Average of calcite productivity was 10.56 mg/mL. And average of ammonium concentration by urease activity was $8.00{\mu}M$. Two useful CFB strains of the others were analyzed by 16S rRNA and identified as Sporosarcina sp. and Viridibacillus arenosi. The CFB strains presented in this study are indigenous microorganisms in Korea and they are expected to be applicable to a variety of environments in the country.

Lateral Resolution Enhancement in Confocal Self-interference Microscopy with Commercial Calcite Plate

  • Kang DongKyun;Yoo HongKi;Lee SeungWoo;Gweon Dae-Gab
    • Journal of the Optical Society of Korea
    • /
    • v.9 no.1
    • /
    • pp.32-35
    • /
    • 2005
  • In light microscopy, spatial resolution is limited by diffraction effect. Confocal microscopy has improved resolutions in both lateral and axial directions, but these are still limited by diffraction effect. Confocal self-interference microscopy (CSIM) uses interference between two perpendicularly polarized beams to enhance lateral resolution. In previous research, we proposed a calcite plate with its optic-axis perpendicular to the propagation angle and one of the boundary surfaces of the plate. This type of plate is not widely used to our knowledge. In this paper, we change the calcite plate to more common one, which is commercially available. This calcite plate has its optic axis in the plane of incidence. We analyze the characteristics of this calcite plate and numerically compare the performances of CSIM in previous research and CSIM with the commercial calcite plate. Numerical results show improved performance when using the commercial calcite plate

Biocementation of Concrete Pavements Using Microbially Induced Calcite Precipitation

  • Jeong, Jin-Hoon;Jo, Yoon-Soo;Park, Chang-Seon;Kang, Chang-Ho;So, Jae-Seong
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.7
    • /
    • pp.1331-1335
    • /
    • 2017
  • In this study, the feasibility of introducing calcite-forming bacteria into concrete pavements to improve their mechanical performance was investigated. Lysinibacillus sphaericus WJ-8, which was isolated in a previous study and is capable of exhibiting high urease activity and calcite production, was used. When analyzed via scanning electron microscopy (SEM) and X-ray diffraction, WJ-8 showed a significant amount of calcite precipitation. The compressive strength of cement mortar mixed with WJ-8 cells and nutrient medium (urea with calcium lactate) increased by 10% compared with that of the controls. Energy dispersive x-ray spectroscopy analyses confirmed that the increase in strength was due to the calcite formed by the WJ-8 cells.

Calcite Production by Bacillus amyloliquefaciens CMB01

  • Lee, Young-Nam
    • Journal of Microbiology
    • /
    • v.41 no.4
    • /
    • pp.345-348
    • /
    • 2003
  • The bio-mediated production of calcite crystals by calcinogenic bacteria has great applicable value for the restoration of deteriorated calcareous monuments, because of its high purity and coherency. An investigation of the conditions for calcite production by an alkalophilic Bacillus amyloliquefaciens CMB01 strain was made. Optimal calcite precipitation occurred when the bacterium was cultured at pH 8.0 and 30$^{\circ}C$, and in B4 medium that consisted of 0.4% yeast extract, 0.5% glucose, and 1.5% calcium acetate. Calcium ion of the bacterially induced calcite was analyzed by an inductively coupled plasma (ICP) spectrophotometer. Optical and scanning electron microscopy (SEM) of the calcite revealed a typical rombohedral polycrystalline structure.

Surface Morphology and Reflectance of Calcite Filler in Glass Composites (Calcite 필러를 함유한 유리 복합체의 표면형상과 반사율)

  • Jeon, Jae-Seung;Hwang, Seong-Jin;Ahn, Ji-Hwan;Kim, Hyung-Sun
    • Korean Journal of Materials Research
    • /
    • v.19 no.8
    • /
    • pp.407-411
    • /
    • 2009
  • Reflection properties, such as specular reflection and diffuse reflection, are very important optical properties for the reflector, which has high reflectance in the display and architecture industry. Calcite is lowcost, nontoxic, and stable over a wide temperature range. Therefore, it is one of the most widely using fillers in many industries and has some advantages over titania as a filler to improve reflectance. However, optical properties, especially those of ceramic-filled composites, have not been analyzed. We studied the reflectance of calcite composites with their surface roughness. The reflectance of the composites was determined using a UV-visible spectrometer. The surface morphology and the micro-structure of the composites were investigated by atomic force microscope. The reflectance of the composites was improved by increasing the content of calcite in the calcite-frit composite. The reflectance is related with the surface roughness in the composites. However, the reflectance depends on the calcite contents in materials with similar surface roughness.

Isolation of Calcite Forming Bacteria and Soil Bio-consolidation with Various Calcium Salts (탄산칼슘 생성 균주의 분리 및 다양한 칼슘원에 따른 토양 고결화)

  • Gu, Takyong;Kang, Chang-Ho;Shin, Yujin;So, Jae-Seong
    • KSBB Journal
    • /
    • v.32 no.3
    • /
    • pp.206-211
    • /
    • 2017
  • The physical method used to prevent a landslide has the risk of environmental pollution. Calcite forming bacteria (CFB) have been received increasing attention as a novel and environmental friendly strategy for the soil improvement. In this study, we selected 11 CFB strains with high calcite production. We also examined survivability and calcite productivity of the strains under various stress conditions to select strains with high resistance to various stresses. Two strains was selected by environment stress. Sphingobacterium sp. KJ-32 and Viridibacillus arenosi B-25 precipitate calcite more than other strains at pH 5 and $15^{\circ}C$ respectively. Bio-consolidated soil cakes were made using various calcium salts (calcium chloride, calcium acetate, calcium lactate, calcium gluconate) with mixed culture of 2 strains. Among them, the calcite made using calcium chloride was the largest. These observations demonstrate that this bio-consolidation technology has the potential for eco-friendly prevention of landslide and soil improvement.

Formation of Oriented Hydroxyapatite Rods by Hydrothermal Treatment of Calcite Single Crystal

  • Kim, Ill-Yong;Kikuta, Koichi;Ohtsuki, Chikara
    • Korean Journal of Materials Research
    • /
    • v.22 no.8
    • /
    • pp.397-402
    • /
    • 2012
  • Morphological control on hydroxyapatite crystals has attractive prospects in research to clarify the effects of crystal planes on biological performance. Hydrothermal processing is known as a typical type of processing for fabricating well-grown crystals with unique morphology. The purpose of the present study is to examine the feasibility of well-crystallized crystals with oriented structures through hydrothermal treatment of calcite. A single crystal of calcite was applied to hydrothermal treatment in a phosphate solution at $160^{\circ}C$. Rod-shaped hydroxyapatite crystals with micrometer-size were formed on the {100} face of calcite after treatment, while nanometer-sized hydroxyapatite crystals were formed on the (111). The hydroxyapatite crystals formed on each plane were not morphologically changed with increasing treatment periods. An oriented structure of rod-shaped hydroxyapatite was constructed after hydrothermal treatment of {100} planes on the calcite single, while such orientation was not observed on the (111) plane after the treatment. The layer of hydroxyapatite formed on the {100} plane was thicker than that of the (111) plane. The {100} plane of calcite shows a higher reactivity than that of the (111) plane, which results in rapid crystal growth of hydroxyapatite. The difference in the morphology of the formed hydroxyapatite was governed by the reactivity of each crystal plane exposed to the surrounding solution.