• Title/Summary/Keyword: camellia oil

Search Result 33, Processing Time 0.029 seconds

Quality Evaluation on Use of Camellia Oil as an Alternative Method in Dried Seaweed Preparation

  • Kim, Jae Kyeom;Park, Hui Gyu;Kim, Cho Rong;Lim, Ho-Jeong;Cho, Kye Man;Choi, Jine Shang;Shin, Dong-Hoon;Shin, Eui-Cheol
    • Preventive Nutrition and Food Science
    • /
    • v.19 no.3
    • /
    • pp.234-241
    • /
    • 2014
  • The fatty acid and volatile compound compositions of camellia oil were analyzed in this study. The impacts of the replacement of conventional vegetable oil with camellia oil on the sensory attributes of dried seaweed were also determined. C18:1 (83.59%), followed by C16:0 and C18:2, were the most abundant fatty acids in camellia oil. A total of 11 and 32 volatile compounds were identified in camellia oil and sesame oil, respectively. In the preference test, the camellia oil samples received a higher, although insignificant, liking rating in overall acceptability of appearance. Overall, there were no differences between the sensory attributes of camellia oil and sesame oil. This finding, combined with the unique fatty acid composition, thermal stability, and health benefits of camellia oil indicate that further study into the use of camellia oil in foods is warranted.

Analysis of Fatty Acid Composition and Methyl-ester Properties of Camellia and Tea Oil (동백나무와 차나무 기름의 지방산 조성 및 메틸에스테르 특성 분석)

  • Kim, Kwang-Soo;Lee, Yong-Hwa;Jang, Young-Seok;Choi, In-Hu
    • New & Renewable Energy
    • /
    • v.9 no.3
    • /
    • pp.36-42
    • /
    • 2013
  • To secure raw materials of biodiesel production, the possibility of camellia (C. japonica L.) and tea (C. sinensis L.) seed oil was studied to produce biodiesel. In this research, crude oil contents and fatty acid compositions of seeds were analyzed by Solxlet and Gas chromatography (GC). The oil contents in the seeds of camellia were 69.8%~73.8%, and tea were 26.3%~29.4%. Among the fatty acids of camellia and tea oil, oleic acid was dominant. The unsaturated fatty acids accounted for 88.4% and 80.2% of the whole fatty acids of camellia and tea seed oil. Total seed oil content and fatty acid composition of tea seed were influenced by collecting date. Across maturation period, oil content of tea seed averaged 18.3% on $6^{th}$ September increasing to 27.9% by $11^{th}$ October. For largest seed yield and oil content, the optimum time to harvest tea is in middle october, and camellia is late september and thereafter. The extraction efficiency of oil from seeds by extraction methods was determined. Biodiesel were synthesized in 92.1~92.8% yields from camellia and tea oils by transesterification. The biodiesel was characterized by its physical and fuel properties including oxidation stability, iodine value and cold filter plugging point (CFPP). Oxidation stability of camellia was 8.6~8.8 hours and tea was 2.9~3.6 at $110^{\circ}C$. Camellia oil had considerably better oxidation stability and CFPP than tea oil.

Oxidative Stability and Sensory Evaluation of Camellia Oil (동백유의 산화안정성과 관능평가)

  • 양화영;표영희;안명수
    • Korean journal of food and cookery science
    • /
    • v.12 no.3
    • /
    • pp.367-371
    • /
    • 1996
  • Camellia oil refined under laboratory conditions had a lower content of linoleic acid, higher oleic acid and lower iodine value than soybean oil. The oxidative stability of camellia oil from POV and AV was much higher than that of soybean oil during autoxidation. The acid values of both oils increased with frequency of frying whereas iodine value decreased. The significant decrease of iodine value of soybean oil compared to camellia oil is thought to be because more double bonds are present in soybean oil than in camellia oil. The result of sensory evaluation for taste, color, odor and total acceptance of potato chips fried with camellia, soy-bean and corn oil revealed that the potato chips prepared from camellia oil was the most favorable.

  • PDF

Anti-inflammatory activity of Camellia japonica oil

  • Kim, Seung-Beom;Jung, Eun-Sun;Shin, Seung-Woo;Kim, Moo-Han;Kim, Young-Soo;Lee, Jong-Sung;Park, Deok-Hoon
    • BMB Reports
    • /
    • v.45 no.3
    • /
    • pp.177-182
    • /
    • 2012
  • Camellia japonica oil (CJ oil) has been used traditionally in East Asia to nourish and soothe the skin as well as help restore the elasticity of skin. CJ oil has also been used on all types of bleeding instances. However, little is known about its anti-inflammatory effects. Therefore, the anti-inflammatory effects of CJ oil and its mechanisms of action were investigated. CJ oil inhibited LPS-induced production of NO, $PGE_2$, and TNF-${\alpha}$ in RAW264.7 cells. In addition, expression of COX-2 and iNOS genes was reduced. To evaluate the mechanism of the anti-inflammatory activity of CJ oil, LPS-induced activation of AP-1 and NF-${\kappa}B$ promoters was found to be significantly reduced by CJ oil. LPS-induced phosphorylation of $I{\kappa}B{\alpha}$, ERK, p38, and JNK was also attenuated. Our results indicate that CJ oil exerts anti-inflammatory effects by downregulating the expression of iNOS and COX-2 genes through inhibition of NF-${\kappa}B$ and AP-1 signaling.

A Study on the Functional Properties of Camellia(Camellia japonica L.) Seed Protein Isolate (분리 동백단백의 기능적 특성)

  • 강성구
    • Korean Journal of Plant Resources
    • /
    • v.11 no.3
    • /
    • pp.272-278
    • /
    • 1998
  • This study was carried out to investigate the functional properties such as nitrogen solubility, emulsifying property , foaming capapcity , water and oil absorption of Camellia (Camellia japonica .) seed protein isolate in condition of distilled water and 0.5M NaCl solution at pH 2.0∼10.0. Nitrogen solubility of Camellia protein isolate in distilled water showed the minimum value at pH 4.0 and increased at pH lower or higher than the isoelectric point(pH 4.0). It was 90.0 %at pH 10.0 Nitrogen solubility of 0.5M NaCl solution showed a similar pattern with that of distrille dwater but was higher than that of distilled water except pH 2.0 and pH 10.0. Emulsifying activity of Camellia seed protein islate showed the minimum value at pH 4.0, but was higher at ether value of pH. Emulsifying stability of protein isolate was stable by heat treatment for 30min, at 80℃ and increased in 0.5M NaCl solution more than that of distille dwater. Foaming capacity of Camellia seed protein isolate in distill3ed water showed the minimum value near the isoelectric point, While it changed little at other values of pH. Foaming stability slowly decreased as, but didn't make a significant difference as time was delayed . Oil absorption was 1.4ml per a sample of 1g and water absorption was 0.9ml per a sample of 1g. The former was higher than the latter . The content of total amino acid of Camellia protein isolate was 43.67% and the major total amino acid of Camellia protein isolate was 43.67% and the major total amino acid was in the order of glutamic acid , arginine, aspartic acid, and leucine.

  • PDF

Effects of Extraction Method on the Thermal Oxidative Stability of Seed Oils from Camellia sinensis L. (녹차 종실유의 제조법에 따른 열산화 안정성 비교)

  • Kim, Mi-Sun;Lee, Jae-Hwan;Kim, Myong-Ae
    • Journal of the Korean Society of Food Culture
    • /
    • v.25 no.6
    • /
    • pp.788-794
    • /
    • 2010
  • Camellia sinensis L. (green tea) seed oils were prepared by roasting at $213^{\circ}C$ and pressing (RP), pressing (P), and nhexane extraction (H). The physico-chemical properties of the RP, P, and H samples, including fatty acid composition, color, and sensory characteristics were analyzed. RP, P and H samples were thermally oxidized at $180^{\circ}C$, and oxidative stability was determined by DPPH, CDA, and p-AV at 0, 20, 40, 60, and 80 min. Compared to the P and H samples, RP resulted in significantly higher thermal oxidative stability according to the DPPH, CDA, and p-AV results (p<0.05). The ratio of unsaturated fatty acids to saturated fatty acids among RP, P, and H samples were significantly different (p<0.05). The oleic acid and linoleic acid contents in green tea seed oils were 58 and 23%, respectively. Hunter's color value of lightness (L) for the RP, P, and H samples was not significant. Redness (a) of RP was $3.47{\pm}0.119$ and yellowness (b) of H was $60.10{\pm}2.483$, which were significantly different. Compared to RP samples, H and P samples had the highest color and off-odor values in the sensory evaluation. RP samples showed the highest taste value and were significant overall (p<0.05). The thermal stability of RP extraction was more stable than any other method. Camellia sinensis L. seed oil extracted by RP had better sensory characteristics than other edible oils, including soybean oil, grape seed oil, and extra virgin olive oil.

Comparison of Antioxidant Activity of Vegetable Oil by Using Adsorbents (식물성 압착오일의 흡착제에 따른 항산화 활성 비교)

  • Ku, Hee-Yeon;Lee, Ki-Young
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.4
    • /
    • pp.57-62
    • /
    • 2018
  • This study was designed to analyze the chemical composition and antioxidant activity of various vegetable oils (pumpkin seed oil, camellia seed oil, red pepper seed oil and peanut oil) using adsorbents (active carbon, acid clay, kaolin). Their chemical composition was analyzed by GCMS. Their antioxidant activity was evaluated by measuring their DPPH and ABTS radical scavenging activity. After the treatment with the adsorbents, the contents of most of the fatty acids and active ingredients contained in the four kinds of vegetable oils were reduced. After the treatment with the three adsorbents, the linoleic acid and erythrodiol contents of the pumpkin seed oil were reduced. In the case of the camellia seed oil, the fatty acids content was decreased, but there was no loss of vitamin E after the acid clay treatment. The content of the compound capsaicin, which forms part of the spicy component of red pepper seed oil, was reduced by 53.33% after the acid clay treatment. The peanut oil showed the lowest loss of sitosterol compound in the group treated with active carbon. The antioxidant activity was observed to be in the order of pumpkin seed oil (kaolin>acid clay>active carbon), camellia seed oil (acid clay>kaolin>active carbon), red pepper seed oil (kaolin>acid clay>active carbon) and peanut oil (active carbon>acid clay>kaolin).

Optimization of 1(3)-Palmitoyl-2-Oleoyl-3(1)-Stearoyl Glycerol Produced via Lipase-catalyzed Esterification Using the Response Surface Methodology (Camellia Oil로부터 1(3)-Palmitoyl-2-Oleoyl-3(1)-Stearoyl Glycerol을 함유한 효소적 합성반응물의 최적화 연구)

  • Hwang, Yun-Ik;Shin, Jung-Ah;Lee, Jeung-Hee;Hong, Soon-Taek;Lee, Ki-Teak
    • Food Science and Preservation
    • /
    • v.18 no.5
    • /
    • pp.721-728
    • /
    • 2011
  • 1(3)-palmitoyl-2-oleoyl-3(1)-stearoyl-(POS)-glycerol-enriched reaction products were synthesized from camellia oil, palmitic ethyl ester, and stearic ethyl ester via lipase-catalyzed interesterification. Response surface methodology (RSM) was employed to optimize the production of the POS-enriched reaction product (Y1, %) and the stearicand palmitic-acid contents at the sn-2 position due to acyl migration (Y2, %). The reaction factors were the enzyme amount (X1, 2-6%), reaction time (X2, 60-360 min), and substrate molar ratio of camellia oil to palmitic ethyl ester and stearic ethyl ester (X3, 1-3 mol). The predictive models for Y1 and Y2 were adequate and reproducible as no lack of fit was signified (0.128 and 0.237) and as there were satisfactory levels of R2 (0.968 and 0.990, respectively). The optimal conditions for the reaction product for maximizing Y1 while minimizing Y2 were predicted at the reaction combination of 5.86% enzyme amount, 60 min reaction time, and 1:3 substrate molar ratio (3 moles of palmitic ethyl ester and 3 moles of stearic ethyl ester). Actual reaction was performed under the same conditions as above, and the resulting product contained 20.19% TAG-P/O/S and 12.71% saturated fatty acids at the sn-2 position.

Antioxidant and Antimicrobial Activities of Camellia Oleifera Seed Oils

  • Zhou, Qing-Fen;Jia, Xue-Jing;Li, Qian-Qian;Yang, Rui-Wu;Zhang, Li;Zhou, Yong-Hong;Ding, Chun-Bang
    • Journal of Applied Biological Chemistry
    • /
    • v.57 no.2
    • /
    • pp.123-129
    • /
    • 2014
  • The antioxidant and antimicrobial activities of Camellia oleifera seed oil were studied. Four kinds of seed oil samples were prepared, crude oil and refined oil, extracted by cold pressing method (CPC, CPR), and organic solvent extraction (OSC, OSR). Antioxidant activity analysis was measured in 2,2-azinobis (3-ethylbenzothiazoline-6-sulfonic acid)-diammonium salt, ferric reducing Ability of Plasma, and 2,2-diphenyl-1-picrylhydrazyl assays. Besides, the percentage of inhibition of red blood cells hemolysis induced by 2,2'-azobis(2-amidnopropane) dihydrochlorid, the lag time of LDL conjugated dienes formation in vitro, and the inhibitors of loss in tryptophan fluorescence were all used to estimate the antioxidant activity of the samples. The total phenolic contents (TPC) were detemined by Folin-Ciocalteu method. The TPC of the C. oleifera seed oils can be arranged in descending order: CPC ($1.9172{\mu}g/mL$) > OSC ($1.5218{\mu}g/mL$) > CPR ($1.0611{\mu}g/mL$) > OSR ($0.6782{\mu}g/mL$). And the oils were investigated for activity against Escherichia coli, Bacillus subtilis, Saccharomyces cerevisiae and Aspergillus niger. The results showed the antioxidant activity of crude oil by cold pressing method was stronger than others, and all oils did inhibit activity of the top three bacteria expert A. niger. The further significance of the study contributes to measure the antioxidant and antimicrobial activity of the potential health benefits by the different methods of preparation and the oil of C. oleifera seeds acting as free radical scavenger, pharmaceuticals and preservatives may offer some information in medicine and cosmetic not just in food field.

Fatty Acid Composition of Total Lipids from Seeds of Wild and Cultivated Camellia Japonica (한국산 야생 및 재배동백종자의 지방산 조성)

  • Yoon, Tai-Heon;Lee, Jung-Sun;Im, Kyung-Ja
    • Journal of the Korean Applied Science and Technology
    • /
    • v.8 no.1
    • /
    • pp.51-54
    • /
    • 1991
  • The seeds of wild and cultivated Camellia japonica were studied for their lipid contents and fatty acid composition. The seeds of wild and cultivated Camellia japonica contained 70.2% and 73.4% lipids, respectively. Fifteen fatty acids were identified in the lipids from the Camellia japonica seeds. In addition to confirming the 5 previously reported (16 : 0, 18 : 0, 18 : 1, 18 : 2 and 18 : 3), 10 more acids were characterized. The newly identified acids were 14 : 0, 16 : 1, 17 : 0, 20 : 0, 20 : 1, 20 : 2, 22 : 0, 22 : 1, 24 : 0 and 24 : 1. Both seeds lipids contained 18 : 1 in high levels (81. 6${\sim}$82. 2%). Little difference in fatty acid composition was noted between the wild and cultivated Camellia japonica seed lipids. The fatty acid composition of commercial Camellia japonica oil was similar to those of the Camellia japonica seed lipids.