• Title/Summary/Keyword: cancer gene therapy

Search Result 370, Processing Time 0.032 seconds

Gene Therapy for Oral Cancer

  • Chung, In-Jae
    • Biomolecules & Therapeutics
    • /
    • v.15 no.4
    • /
    • pp.273-280
    • /
    • 2007
  • New treatment approaches are needed to improve the effectiveness of oral cancer treatment, since surgical resection of the tumor in oral region causes various oral dysfunctions. The molecular biology of oral cancer has been progressively delineated. Concurrently, gene therapy techniques have been developed that allow targeting or replacement of dysfunctional genes in cancer cells, offering the potential to treat a wide range of cancer. Oral carcinoma is attractive target for gene therapy because of its accessibility. In this article, we review the current status of gene therapy as applied to oral carcinoma.

A non-replicating oncolytic vector as a novel therapeutic tool against cancer

  • Kaneda, Yasufumi
    • BMB Reports
    • /
    • v.43 no.12
    • /
    • pp.773-780
    • /
    • 2010
  • Cancers are still difficult targets despite recent advances in cancer therapy. Due to the heterogeneity of cancer, a single-treatment modality is insufficient for the complete elimination of cancer cells. Therapeutic strategies from various aspects are needed. Gene therapy has been expected to bring a breakthrough to cancer therapy, but it has not yet been successful. Gene therapy also should be combined with other treatments to enhance multiple therapeutic pathways. In this view, gene delivery vector itself should be equipped with intrinsic anti-cancer activities. HVJ (hemagglutinating virus of Japan; Sendai virus) envelope vector (HVJ-E) was developed to deliver therapeutic molecules. HVJ-E itself possessed anti-tumor activities such as the generation of anti-tumor immunities and the induction of cancer-selective apoptosis. In addition to the intrinsic anti-tumor activities, therapeutic molecules incorporated into HVJ-E enabled to achieve multi-modal therapeutic strategies in cancer treatment. Tumor-targeting HVJ-E was also developed. Thus, HVJ-E will be a novel promising tool for cancer treatment.

Liposome-Mediated Cancer Gene Therapy: Clinical Trials and their Lessons to Stem Cell Therapy

  • Lee, Jung-Hoon;Lee, Min-Jae
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.2
    • /
    • pp.433-442
    • /
    • 2012
  • The promise of stem cell therapy for various clinical applications seems getting realistic. An increasing number of researchers, from virtually every discipline of natural sciences, are flocking into this new world. Only ten years ago, gene therapy was the medicine for the 21st century. The possibility was endless. Although the science itself underlying gene therapy was very young, the field was exploding under the optimism that this new medicine would revolutionize both the basic and clinical sciences. For many reasons, the initial target was cancer. Here, we will focus on the results of cancer gene therapy clinical trials using liposome or nonviral gene carrier, hoping that the lesson from here will be a guideline for the new generation of cell-based therapies.

Cancer Gene Therapy. History and Major Developments (암 유전자 치료제의 개발 현황)

  • 정인재
    • Toxicological Research
    • /
    • v.19 no.3
    • /
    • pp.247-257
    • /
    • 2003
  • Medicine is undergoing a revolution in the understanding of the mechanisms through which disease processes develop. The advent of genetics and molecular biology to oncology not only is providing surrogate predictors of therapy response and survival which are forming the basis for selection among established treatment options, but is providing targets for new directions in therapy as well. Molecular modification of somatic cells for the purposes of protecting the normal cells from the toxicity of cancer chemotherapy, for the sensitization of the tumor cells to therapy and use of conditionally replicating viral vector have been new directions of cancer treatment which have reached the clinical arena. Advances in molecular pharmacology and vector design summarized in this paper may provide solutions to some of the existing problems in the technology of gene transfer therapy. Continued basic research into the biological basis of human disease, systemic studies of the application of these discoveries to therapy and the improvement of vector for gene delivery all combined may result in advances in this important field of therapy over the next few years.

The Current Status of Adenovirus-based Cancer Gene Therapy

  • Shirakawa, Toshiro
    • Molecules and Cells
    • /
    • v.25 no.4
    • /
    • pp.462-466
    • /
    • 2008
  • Adenoviruses are the most commonly used gene-delivery vectors due to the efficiency of their in vivo gene transfer. Since 1993, about 300 protocols using an adenoviral vector have been performed, although they have yet to be proven effective in clinical trials. The adenovirus-based vector has been continuously improved by modification of the adenoviral genome and capsid, and novel adenovirus-delivery systems, such as the carrier-cell delivery system, have been recently proposed. Adenovirus-based cancer gene therapy is fast becoming one component of a multi-modality treatment approach to advanced cancer, along with surgery, radiotherapy, and chemotherapy.

A Cancer-specific Promoter for Gene Therapy of Lung Cancer, Protein Regulator of Cytokinesis 1 (PRC1) (폐암의 유전자 치료법을 위한 암특이적인 PRC1 프로모터)

  • Cho, Young-Hwa;Yun, Hye-Jin;Kwon, Hee-Chung;Kim, Hee-Jong;Cho, Sung-Ha;Kang, Bong-Su;Kim, Yeun-Ju;Seol, Won-Gi;Park, Kee-Rang
    • Journal of Life Science
    • /
    • v.18 no.10
    • /
    • pp.1395-1399
    • /
    • 2008
  • We have recently reported the PRC1 promoter as a promoter candidate to control expression of transcriptionally targeted genes for breast cancer gene therapy. We tested whether the PRC1 promoter could be also applied for the lung cancer gene therapy. In the transient transfection assay with naked plasmids containing the luciferase fused to the PRC1 promoter, the promoter showed little activity in the normal lung cell line, MRC5. However, in the lung cancer A549 cells, PRC1 showed approximately 30-fold activation which was similar to the survivin promoter, the gene whose promoter has been already reportedas a candidate for the gene therapy of lung cancer. In viral systems, the PRC1 promoter showed approximately 75% and 66% of transcriptional activity compared to the CMV promoter in the adeno-associated virus (AAV) and the adenovirus (AV) systems, respectively. However, the PRC1 promoter in either AAV or AV showed approximately 20% activity compared to the CMV promoter in the normal lung cells. In addition, human lung tumor xenograft mice showed that the PRC1 promoter activity was as strong as the CMV activity in vivo. Taken together, these results suggested that PRC1 might be a potential promoter candidate for transcriptionally targeted lung cancer gene therapy.

Innovation Status of Gene Therapy for Breast Cancer

  • Anaya-Ruiz, Maricruz;Perez-Santos, Martin
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.9
    • /
    • pp.4133-4136
    • /
    • 2015
  • Background: To analyze multi-source data including publications and patents, and try to draw the whole landscape of the research and development community in the field of gene therapy for breast cancer. Materials and Methods: Publications and patents were collected from the Web of science and databases of the five major patent offices of the world, respectively. Bibliometric methodologies and technology are used to investigate publications/patents, their contents and relationships. Results: A total of 2,043 items published and 947 patents from 1994 to 2013 including "gene therapy for breast cancer" were retrieved. The top five countries in global publication share were USA, China, Germany, Japan and England. On the other hand, USA, Australia, England, South Korea and Japan were the main producers of patents. The universities and enterprises of USA had the highest amount of publication and patents. Adenovirus- and retrovirus-based gene therapies and small interfering RNA (siRNA) interference therapies were the main topics both in publications and patents. Conclusions: The above results show that global research in the field of gene therapy for breast cancer is increasing and the main participants in this field are USA and Canada in North America, China, Japan and South Korea in Asia, and England, Germany, and Italy in Europe. Also, this article demonstrates the usefulness of bibliometrics to address key evaluation questions and define future areas of research.

Tumor targeted gene therapy (종양 표적 유전자 치료)

  • Kang, Joo-Hyun
    • Nuclear Medicine and Molecular Imaging
    • /
    • v.40 no.5
    • /
    • pp.237-242
    • /
    • 2006
  • Knowledge of molecular mechanisms governing malignant transformation brings new opportunities for therapeutic intervention against cancer using novel approaches. One of them is gene therapy based on the transfer of genetic material to an organism with the aim of correcting a disease. The application of gene therapy to the cancer treatment has led to the development of new experimental approaches such as suicidal gene therapy, inhibition of oncogenes and restoration of tumor-suppressor genes. Suicidal gene therapy is based on the expression in tumor cells of a gene encoding an enzyme that converts a prodrug into a toxic product. Representative suicidal genes are Herpes simplex virus type 1 thymidine kinase (HSV1-tk) and cytosine deaminase (CD). Especially, physicians and scientists of nuclear medicine field take an interest In suicidal gene therapy because they can monitor the location and magnitude, and duration of expression of HSV1-tk and CD by PET scanner.

Induction of cancer cell-specific death via MMP2 promoterdependent Bax expression

  • Seo, Eun-Jeong;Kim, Se-Woon;Jho, Eek-hoon
    • BMB Reports
    • /
    • v.42 no.4
    • /
    • pp.217-222
    • /
    • 2009
  • Controlled gene expression in specific cells is a valuable tool for gene therapy. We attempted to determine whether the lentivirus-mediated Tet-On inducible system could be applied to cancer gene therapy. In order to select the genes that induce cancer cell death, we compared the ability of the known pro-apoptotreic genes, Bax and tBid, and a cell cycle inhibitor, p21cip1/waf1, and determined that Bax was the most effective. For the cancer cell-specific expression of $rtTA2^S$-M2, we tested the matrix metalloproteinase-2 (MMP-2) promoter and determined that it is highly expressed in cancer cell lines, including SNU475 cells. The co-transduction of two lentiviruses that contain sequences for TRE-Bax and $rtTA2^S$-M2, the expression of which is controlled by the MMP-2 promoter, resulted in the specific cell death of SNU475, whereas other cells with low MMP-2 expression did not evidence significant cell death. Our data indicate that the lentivirus-mediated Tet-On system using the cancer-specific promoter is applicable for cancer gene therapy.