• Title/Summary/Keyword: carbon black

Search Result 1,017, Processing Time 0.024 seconds

Studies on the Current Carbon Black Industries (최근(最近) Carbon Black 산업(産業) 동향(動向) 고찰(考祭) (고무용(用) Carbon Black을 중심(中心)으로))

  • Hwang, Yoon-Tae;Lee, Chang-Se
    • Elastomers and Composites
    • /
    • v.27 no.2
    • /
    • pp.89-101
    • /
    • 1992
  • This paper is concerned with analysis for market trend and technological tendency of rubber-use black among United state, Japan and Korea, Through this comparative analysis, the subjects with which domestic carbon black industry is confronted are : first, development of new grade carbon black such as high performance carbon black, Low rolling resistance carbon black and lower grit carbon black, Second, reduction of quality fluctuation, third, improvement of applied technology and fourth, strengthening the price competitiveness through process optimization and productivity increase.

  • PDF

The Study on Physical Properties of Rubber Compounds with Silica Doped Carbon Black (실리카가 도핑된 카본블랙을 함유한 고무조성물의 물성에 관한 연구)

  • Lee, Seag;Park, Nam-Cook
    • Elastomers and Composites
    • /
    • v.33 no.1
    • /
    • pp.44-51
    • /
    • 1998
  • The purpose of this experiments were investigated on the physical properties of rubber com-pounds containing two types carbon black. Bound rubber and interaction coefficient for com-pounds with pure carbon black were higher than those for the compounds with dual phase carbon black. Slightly higher values in 300% modulus and tensile strength indicated that the ratio of rubber-filler bound to rubber-rubber bound of pure carbon black were higher than those of com-pounds with dual phase carbon black. It was founded that dynamic properties, that is rebound, heat build-up, 0 & $60^{\circ}C$ tan $\delta$, and cut and chip loss of compounds with dual phase carbon black were better than those of compounds with pure carbon black, but abrasion property of dual phase carbon black was lower than those of pure carbon black because of low reinforcing ability.

  • PDF

A study on the conductive critical behavior of Carbon black-polymer Composites (Carbon black-Polymer 복합재료의 전도임계 현상에 대한 고찰)

  • Kim, Han-Sung;Kim, Jae-Ho
    • Proceedings of the KIEE Conference
    • /
    • 1987.11a
    • /
    • pp.508-510
    • /
    • 1987
  • The variation electrical resistivity of Carbon black filled polymers with volume percent of carbon black was investigated. The relationships between the surface tension of polymer and dispertion effect of carbon black were studied to find the steep drop of electrical resistivity. The critical volume percent of carbon black increased with the increasing surface tension of polymer. The PTC intensity decreased with the increasing volume percent of carbon black.

  • PDF

Blowout of Rubber Vulcanizates: Influences of Cure Systems, Content of Carbon Black, and Organic Addities

  • 최성신;김익식
    • Bulletin of the Korean Chemical Society
    • /
    • v.19 no.2
    • /
    • pp.174-178
    • /
    • 1998
  • Blowout of NR and SBR vulcanizates was studied using a microwave oven. Rubber vulcanizates with different contents of carbon black (0, 30, 50, 70 phr) and various cure systems (conventional, semi-EV, and EV) were prepared. Unfilled rubber vulcanizates did not exploded by irradiation of microwave, while carbon black-filled ones exploded within 10 min. A blowout time of the carbon black-filled rubber vulcanizate decreases with an increase of the content of carbon black in the vulcanizate. A blowout temperature of the organic additive-extracted vulcanizate is higher than that of the not-extracted one, but the extracted vulcanizate blows out faster than the not-extracted one. A blowout temperature of the overcured vulcanizate is higher than that of the undercured one with the same cure system. Temperatures of unfilled SBR vulcanizates heated by the microwave irradiation are lower than those of unfilled NR ones. The carbon black-filled SBR vulcanizates blow out at higher temperatures than the carbon black-filled NR ones. Blowout times of the carbon black-filled SBR vulcanizates are longer than those of the carbon black-filled NR ones.

Modification of C/C Composite Bipolar Plate by Addition of Electro-Conductive Carbon Black

  • Ryu, Seung-Kon;Hwang, Taek-Sung;Lee, Seung-Goo;Lee, Sun-A;Kim, Chang-Soo
    • Carbon letters
    • /
    • v.2 no.3_4
    • /
    • pp.165-169
    • /
    • 2001
  • Modification of C/C composite bipolar plate for improving electrical conductivity was carried out by addition of electroconductive carbon black (EC-CB). Carbon black was carefully mixed to methanol-containing phenolic resin, impregnated into 2D-carbon fabrics, hot pressed and then carbonized to obtain composite plate. Inclusion of electro-conductive carbon black enhanced the electrical conductivity of the C/C composites by increasing the conduction path. Addition of 10 vol% carbon black increased the electrical conductivity from 5.5/${\Omega}cm$ to 32/${\Omega}cm$ and reduced the crack formation by filling effect, resulting in the increase of flexural properties of composite plate. However, at carbon black content over 10 vol%, flexural properties decreased by delaminating role of excess carbon black at the interface in C/C composites.

  • PDF

Optimum Condition of Conducting Materials on Carbon-PTFE Electrode for Electric Double Layer Capacitor (EDLC용 Carbon-PTFE 전극에서의 도전재 조성 최적화)

  • 이선영;김익준;문성인
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.9
    • /
    • pp.973-978
    • /
    • 2004
  • This work describes the effect of conducting materials on the electrochemical performances of electric double layer capacitor. Three kinds of Carbon black, such as Acethylene Black, Super P Black, Ketjen black supplied by Denki Kagaku Kogyo, MMM Carbon, Ketjen Black International Co. respectively, was added in carbon-Polytetrafluoroethylene (PTFE) electrode, which composition is activated carbon : carbon black : PTFE = 80 : 15 : 5 wt.%, and were compared with their electrochemical properties. The electrode with Ketjen Black has showed the lowest resistance than other carbon black, and also exhibited the better rate capability between 0.5 mA/cm$^2$ ∼ 100 mA/cm$^2$ current density in unit cell capacitor. On the other hand, as increasing the composition of Ketjen Black, the specific resistances of electrodes were decreased and Ketjen Black content higher than 15 wt% increased. The best rate capability was obtained at the electrode with 15 wt.% of Ketjen Black in unit cell capacitor. This behaviors would be correlated with the dense structure of electrode.

A study on the change of the fatigue life and the fracture morphology due to the carbon black on the Natural rubber for vibration-proof (철도차량 부쉬용 방진 천연고무의 카본블랙 강화제에 의한 피로수명과 파단 모폴로지 변화 연구)

  • Kim Jae-Hoon;Hur Hyun-Moo
    • Journal of the Korean Society for Railway
    • /
    • v.8 no.1
    • /
    • pp.21-26
    • /
    • 2005
  • The effects of carbon black on the fatigue lift and the fracture morphology and the carbon black dispersion of the carbon-black filled natural rubbers, for the vibration-proof, were investigated. Different kinds of carbon blacks resulted in different fatigue lift and fracture morphologies, which are classified by micro-scale and macro-scale fracture morphologies. These results be related to the size distribution of carbon black particles, the development of the carbon black agglomerate and the combine forces between the carbon black and the natural rubber.

Mesoporous Carbon Electrodes for Capacitive Deionization (축전식 탈염 공정을 위한 메조포러스 탄소 전극)

  • Lee, Dong-Ju;Park, Jin-Soo
    • Journal of the Korean Electrochemical Society
    • /
    • v.17 no.1
    • /
    • pp.57-64
    • /
    • 2014
  • Carbon electrodes for capacitive deionization were fabricated through mixing two different carbon powders (activated carbon powder, carbon black) with different particle sizes to investigate physical or electrochemical properties and finally desalination performances of the electrodes with various compositions of two carbon powders in weight and were compared with the electrode consisting of activated carbon. As a result, the electrode structure became more packed as increasing the amount of carbon black and resulted in 10% increase in mesopore fraction. The specific capacitance obtained from cyclic voltammograms of various electrodes showed that the electrode containing carbon black only had 107.4 F/g, while the specific capacitance of the electrode having more amount of carbon black increased and was higher than the one having no carbon black. The results of desalination runs in a capacitive deionization cell exhibited that the electrode having the highest amount of carbon black (1 wt%) in this study had the highest desalting efficiency, and no significant pH variation was observed during the runs. It was analyzed using accumulated charge that the fraction of non-Faraday current increased as the amount of carbon black increased in the electrodes. It can be concluded that the addition of carbon black changed the electrode structure resulting in an increase in the fraction of mesopore and finally enhanced the desalting efficiency by decreasing Faraday current.

Development of Electroconductive Paints for Electric-Shock on Human Body Using Carbon Black (카본블랙을 이용한 인체감전용 전도성 도료의 개발)

  • Kang, Kae-Myung
    • Korean Journal of Materials Research
    • /
    • v.18 no.12
    • /
    • pp.683-688
    • /
    • 2008
  • For development of a human body model for electric shock, electroconductive paints with carbon black as a filler material were developed. The characteristics of the volume resistivities of thin films fabricated using the electroconductive paints were investigated as a function of the particle sizes and content of carbon black. With a carbon black particle size over $80\;{\mu}m$, agglomeration of carbon black powders was observed. The volume resistivity of the particles increased as the porosity increased and as the amount of carbon black decreased due to the agglomeration of carbon black powders. With a particle size of $4\;{\mu}m$ and $20\;{\mu}m$, agglomeration of carbon black powders was not observed and their porosities were measured as 0.86% and 1.12% with volume resistivities of $20\;{\Omega}{\cdot}cm$ and $80\;{\Omega}{\cdot}cm$ respectively. A carbon black particle size of less than $20\;{\mu}m$ is considered to be suitable as a type of electric-shock electroconductive paint for a human body model.

Influence of carbon black on electrochemical performance of graphene-based electrode for supercapacitor (슈퍼커패시터를 위한 그래핀 기반 전극의 전기화학적 특성에 대한 카본블랙 도입의 효과)

  • Kim, Ki-Seok;Park, Soo-Jin
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.95.1-95.1
    • /
    • 2011
  • In this work, graphene was prepared by modified Hummers method and prepared graphene was applied to electrode materials for supercapacitor. In addition, to enhance the electrochemical performance of graphene, carbon black was deposited onto graphene via chemical reduction. The effect of the carbon black content incorporated on the electrochemical properties of the graphene-based electrodes was investigated. It was found that nano-scaled carbon black aggregates were deposited and dispersed onto the graphene by the chemical reduction of acid treated carbon black and graphite oxide. From the cyclic voltammograms, carbon black-deposited graphene (CB-GR) showed improved electrochemical performance, i.e., current density, quicker response, and better specific capacitance than that of pristine graphene. This indicates that the carbon black deposited onto graphene served as an conductive materials between graphene layers, leading to reducing the contact resistance of graphene and resulted in the increase of the charge transfer between graphene layers by bridge effect.

  • PDF