• Title/Summary/Keyword: carbon stock

Search Result 167, Processing Time 0.028 seconds

Carbon Stock Variation in Different Forest Types of Western Himalaya, Uttarakhand

  • Shahid, Mohommad;Joshi, Shambhu Prasad
    • Journal of Forest and Environmental Science
    • /
    • v.34 no.2
    • /
    • pp.145-152
    • /
    • 2018
  • Quantification of Carbon stock has become in the contest of changing climate and mitigation potential of forests. Two different forest types, Dry Shiwalik Sal Forest and Moist Shiwalik Sal Forest in Barkot and Lachchiwala of Doon Valley, Western Himalaya are selected for the study. Volume equations, destructive sampling and laboratory analysis are done to estimate the carbon stock in different carbon pools like trees, shrubs, herbs and soils. Considerable variations are observed in terms of carbon stocks in different forest types. In Dry Shiwalik Sal Forest, carbon stock density varied between 129.81 and $136.00MgCha^{-1}$ while in Moist Shiwalik Sal Forest, carbon stock density ranged from 222.29 to $271.67MgCha^{-1}$. Tree species like Shorea robusta, Syzigium cumini, Miliusa velutina, Acacia catechu, and Mallotus philippensis had significant role in carbon sequestration. Shorea robusta had contributed highest in carbon stock due to highest density. Total of 2,338,280.165 Mg carbon stock was estimated in all the forest types.

Challenges in Application of Remote Sensing Techniques for Estimating Forest Carbon Stock (원격탐사 기술의 산림탄소 축적량 추정적용에 있어서의 도전)

  • Park, Joowon
    • Current Research on Agriculture and Life Sciences
    • /
    • v.31 no.2
    • /
    • pp.113-123
    • /
    • 2013
  • The carbon-offset mechanism based on forest management has been recognized as a meaningful tool to sequestrate carbons already existing in the atmosphere. Thus, with an emphasis on the forest-originated carbon-offset mechanism, the accurate measurement of the carbon stock in forests has become important, as carbon credits should be issued proportionally with forest carbon stocks. Various remote sensing techniques have already been developed for measuring forest carbon stocks. Yet, despite the efficiency of remote sensing techniques, the final accuracy of their carbon stock estimations is disputable. Therefore, minimizing the uncertainty embedded in the application of remote sensing techniques is important to prevent questions over the carbon stock evaluation for issuing carbon credits. Accordingly, this study reviews the overall procedures of carbon stock evaluation-related remote sensing techniques and identifies the problematic technical issues when measuring the carbon stock. The procedures are sub-divided into four stages: the characteristics of the remote sensing sensor, data preparation, data analysis, and evaluation. Depending on the choice of technique, there are many disputable issues in each stage, resulting in quite different results for the final carbon stock evaluation. Thus, the establishment of detailed standards for each stageis urgently needed. From a policy-making perspective, the top priority should be given to establishinga standard sampling technique and enhancing the statistical analysis tools.

  • PDF

Assessment of Carbon Stock in Chronosequence Rehabilitated Tropical Forest Stands in Malaysia

  • Kueh, Roland Jui Heng;Majid, Nik Muhamad;Ahmed, Osumanu Haruna;Gandaseca, Seca
    • Journal of Forest and Environmental Science
    • /
    • v.32 no.3
    • /
    • pp.302-310
    • /
    • 2016
  • The loss and degradation in tropical forest region are some of the current global concern. Hence, these issues elevated the role of rehabilitated forests in providing ecological products and services. The information on the carbon stock is important in relation to global carbon and biomass use, but lacking from the tropical region. This paper reports the assessment of tree and soil carbon stock in a chronosequence rehabilitated tropical forest stands in Malaysia. The study site was at the UPM-Mitsubishi Forest Rehabilitation Project, UPMKB. $20{\times}20m$ plot was established each and assessed in 2009 at 1-, 10- and 19-year-old sites while an adjacent ${\pm}23-year-old$ natural regenerating secondary forest plot was established for comparison. The overall total carbon stock was in the order of 19-year-old>${\pm}23-year-old$>10-year-old>1-year-old. When forest carbon stock is low, the soil component plays an important role in the carbon storage. The forest carbon recovery is crucial to increase soil carbon stock. The variations in the carbon stock showed the different stages of the forest recovery. Species survived after 19-years of planting are potential species for carbon sequestration activities in rehabilitated forest. Human intervention in rehabilitating degraded forest areas through tree planting initiatives is crucial towards recovering the forest ecological role especially in forest carbon stock capacity.

Estimation of Carbon Stock in the Chir Pine (Pinus roxburghii Sarg.) Plantation Forest of Kathmandu Valley, Central Nepal

  • Sharma, Krishna Prasad;Bhatta, Suresh Prashad;Khatri, Ganga Bahadur;Pajiyar, Avinash;Joshi, Daya Krishna
    • Journal of Forest and Environmental Science
    • /
    • v.36 no.1
    • /
    • pp.37-46
    • /
    • 2020
  • Vegetation carbon sequestration and regeneration are the two major parameters of forest research. In this study, we analyzed the vegetation carbon stock and regeneration of community-managed pine plantation of Kathmandu, central Nepal. Vegetation data were collected from 40 circular plots of 10 m radius (for the tree) and 1m radius (for seedling) applying a stratified random sampling and nested quadrat method. The carbon stock was estimated by Chave allometric model and estimated carbon stock was converted into CO2 equivalents. Density-diameter (d-d) curve was also prepared to check the regeneration status and stability of the plantation. A d-d curve indicates the good regeneration status of the forest with a stable population in each size class. Diversity of trees was very low, only two tree species Pinus roxburghii and Eucalyptus citriodora occurred in the sample plots. Pine was the dominant tree in terms of density, basal area, biomass, carbon stock and CO2 stock than the eucalyptus. The basal area, carbon stock and CO2 stock of forest was 33±1.0 ㎡ ha-1, 108±5.0 Mg ha-1 and 394±18 Mg ha-1, respectively. Seedling and tree density of the plantation was 4,965 ha-1 and 339 ha-1 respectively. The forest carbon stock showed a positive relationship with biomass, tree diameter, height and basal area but no relationship with tree density. Canopy cover and tree diameter have a negative effect on seedling density and regeneration. In conclusion, the community forest has a stable population in each size class, sequestering a significant amount of carbon and CO2 emitted from densely populated Kathmandu metro city as the forest biomass hence have a potentiality to mitigate the global climate change.

Relationship between Tree Species Diversity and Carbon Stock Density in Moist Deciduous Forest of Western Himalayas, India

  • Shahid, Mohommad;Joshi, Shambhu Prasad
    • Journal of Forest and Environmental Science
    • /
    • v.33 no.1
    • /
    • pp.39-48
    • /
    • 2017
  • With the growing global concern about climate change, relationship between carbon stock density and tree species has become important for international climate change mitigation programmes. In this study, 150 Quadrats were laid down to assess the diversity, biomass and carbon stocks in each of the forest ranges (Barkot Range, Lachchiwala Range and Thano Range) of Dehra Dun Forest Division in Doon Valley, Western Himalaya, India. Community level carbon stock density was analyzed using Two Way Indicator Species Analysis. Species Richness and Shannon Weiner index was correlated with the carbon stocks of Doon Valley. Positive and weak relationship was found between the carbon stock density and Shannon Weiner Index, and between carbon stock density and Species Richness.

Calculation of Blue Carbon Stock and Analysis of Influencing Factors in Bare Tidal Flats (비식생 갯벌의 블루카본 저장량 산정 및 영향인자 분석)

  • Park, Kyeong-deok;Kang, Dong-hwan;Jo, Won Gi;So, Yoon Hwan;Kim, Byung-Woo
    • Journal of Environmental Science International
    • /
    • v.31 no.9
    • /
    • pp.767-779
    • /
    • 2022
  • In this study, sediment cores were sampled from tidal flats (six sites) in the west and south coastal wetlands, the blue carbon stock in the tidal flat sediments was calculated, and the blue carbon stock characteristics and influencing factors were analyzed. The sediment particle size of the west coastal tidal flats was larger than that of the south coastal tidal flats, and the organic carbon content in the south coastal tidal flats was more than twice that of the west coastal tidal flats. Blue carbon stock per unit area was 28.4~36.8 Mg/ha on the west coastal tidal flats and 69.8~89.8 Mg/ha on the south coastal tidal flats, which was more than twice higher in the south coastal tidal flats than in the west coastal tidal flats. The total amount of blue carbon stock in the tidal flats was the highest in Suncheon Bay tidal flats at 153,626 Mg, and followed by Gomso Bay tidal flats at 141,750 Mg, Hampyeong Bay tidal flats at 58,420 Mg, Dongdae Bay tidal flats at 44,900 Mg, Cheonsu Bay tidal flats at 36,880 Mg, and Jinhae Bay tidal flats at 26,205 Mg. Blue carbon stock per unit area was higher in the south coastal tidal flats, but the total amount of blue carbon stock in the tidal flats was higher in the west coast. The slope of the regression function of blue carbon stock with respect to the organic carbon content in the tidal flat sediments was estimated to be about 0.05 to 0.07, and the slope of the regression function was higher in the west coastal tidal flats than in the south coastal tidal flats.

Digital mapping of soil carbon stock in Jeolla province using cubist model

  • Park, Seong-Jin;Lee, Chul-Woo;Kim, Seong-Heon;Oh, Taek-Keun
    • Korean Journal of Agricultural Science
    • /
    • v.47 no.4
    • /
    • pp.1097-1107
    • /
    • 2020
  • Assessment of soil carbon stock is essential for climate change mitigation and soil fertility. The digital soil mapping (DSM) is well known as a general technique to estimate the soil carbon stocks and upgrade previous soil maps. The aim of this study is to calculate the soil carbon stock in the top soil layer (0 to 30 cm) in Jeolla Province of South Korea using the DSM technique. To predict spatial carbon stock, we used Cubist, which a data-mining algorithm model base on tree regression. Soil samples (130 in total) were collected from three depths (0 to 10 cm, 10 to 20 cm, 20 to 30 cm) considering spatial distribution in Jeolla Province. These data were randomly divided into two sets for model calibration (70%) and validation (30%). The results showed that clay content, topographic wetness index (TWI), and digital elevation model (DEM) were the most important environmental covariate predictors of soil carbon stock. The predicted average soil carbon density was 3.88 kg·m-2. The R2 value representing the model's performance was 0.6, which was relatively high compared to a previous study. The total soil carbon stocks at a depth of 0 to 30 cm in Jeolla Province were estimated to be about 81 megatons.

Chittagong University Campus: Rich in Forest Growing Stock of Valuable Timber Tree Species in Bangladesh

  • Akter, Salena;Rahman, Md. Siddiqur;Al-Amin, M.
    • Journal of Forest and Environmental Science
    • /
    • v.29 no.2
    • /
    • pp.157-164
    • /
    • 2013
  • The campus of Chittagong University in Bangladesh is rich in forest ecosystem. The campus has large area with vast tract of land planted with valuable timber tree species. The present study identifies and discovers the potential growing stock of the plantations in the campus area. This Growing stock was measured in three parameters viz. volume, biomass and organic carbon stock. Study identified thirty three economically valuable forest tree species in the plantations of Chittagong University. Out of three growing stock parameters, volume of timber was found to be low in indigenous tree species in the plantation sites other than exotic species. This might be due to their slow growth rate and low density in the plantation sites. However, biomass and organic carbon stock of trees per hactre area showed that indigenous species gather and sequester more timber and carbon respectively than introduced species. Plantations of Chittagong University campus can acquire $25.51m^3/ha$ volume of economically important tree species, where biomass and organic carbon stock is 222.33 tonne/ha and 107.48 tonne/ha respectively. This result shows a positive impression on the plantation site to be considered as good forest reserve.

Estimation of carbon sequestration in natural forests - A Geospatial Approach - (자연 삼림의 탄소 분리 추정에 관한 연구)

  • Ramachandran, Ramachandran;Jayakumar, S.;Heo, Joon;Kim, Woo-Sun
    • 한국공간정보시스템학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.359-362
    • /
    • 2007
  • Estimation of carbon in the natural forest regions is a pre-requisite for carbon management. In the light of increasing carbon dioxide concentration in the atmosphere, the amount of carbon present in the plants and soils are very much needed to estimate the sequestered carbons stock of any region. Carbon stock estimation studies are limited in India, especially in the natural forest regions of Eastern ghats of Tamil Nadu. Remote sensing, Geographical Information System (GIS) and global positioning system (GPS) were used along with extensive field and laboratory works to estimate the carbon stock in the living biomass and soil. About five forest types were identified and mapped using satellite data. The total biomass carbon including above and below ground were 2.74 Tg and the total soil organic carbon was 3.48 Tg. This study has yielded significant information about the carbon stock in a natural forest region and it could be used for future comparative studies.

  • PDF

Comparison of Carbon Stock Between Forest Edge and Core by Using Connectivity Analysis (연결성 분석을 활용한 산림의 주연부와 내부의 탄소저장량 비교)

  • Sung, Sun-Yong;Lee, Dong-Kun;Mo, Yong-Won
    • Journal of Korean Society of Rural Planning
    • /
    • v.21 no.4
    • /
    • pp.27-33
    • /
    • 2015
  • Forest ecosystem is considered as an important stepping stone to minimize the impact of climate change. However, the rapid urbanization has caused fragmentation of forest ecosystem. The fragmentation of forest patch results in edge effect which brings about adverse impacts on forest function and structure. Degradation of forest ecosystem decreases carbon sequestration because edge effect reduces productivity. Therefore, we analyzed the impact of forest edge effect on forest ecosystem carbon stock change in Seongnam-si, Gyeonggi-do. We used connectivity analysis to determine forest edge and core area. The field study sites were selected with considering forest age, density, class and soil type. Secondly, forest carbon stock was calculated with allometric equation. The soil carbon stock was derived from Walkely-Black method. Lastly, Mann-Whitney test was conducted to validate differences between carbon stock in edge and core area. As a result of study, the connectivity analysis was effective to determine forest edge and core. The core and edge of forest patch showed different composition of tree species and soil properties. Carbon stock per tree in the edge area was lower than that in the core area. However, the difference of soil organic carbon content between the edge and core were relatively small. This assessment can be applied for the conservation of forest patch as well as quantitative assessment on the forest carbon stock change caused by fragmentation.