• Title/Summary/Keyword: carbonation process

Search Result 147, Processing Time 0.025 seconds

A reaction-diffusion modeling of carbonation process in self-compacting concrete

  • Fu, Chuanqing;Ye, Hailong;Jin, Xianyu;Jin, Nanguo;Gong, Lingli
    • Computers and Concrete
    • /
    • v.15 no.5
    • /
    • pp.847-864
    • /
    • 2015
  • In this paper, a reaction-diffusion model of carbonation process in self-compacting concrete (SCC) was realized with a consideration of multi-field couplings. Various effects from environmental conditions, e.g. ambient temperature, relative humidity, carbonation reaction, were incorporated into a numerical simulation proposed by ANSYS. In addition, the carbonation process of SCC was experimentally investigated and compared with a conventionally vibrated concrete (CVC). It is found that SCC has a higher carbonation resistance than CVC with a comparable compressive strength. The numerical solution analysis agrees well with the test results, indicating that the proposed model is appropriate to calculate and predict the carbonation process in SCC. The parameters sensitivity analysis also shows that the carbon dioxide diffusion coefficient and moisture field are essentially crucial to the carbonation process in SCC.

Study on the Cargonation Properties of Fly Ash Concrete using a Vacuum Instrument

  • Jung, Sang-Hwa;Yoo, Sung-Won;Chae, Seong-Tae
    • Corrosion Science and Technology
    • /
    • v.6 no.4
    • /
    • pp.186-192
    • /
    • 2007
  • Carbonation is one of the most important factors causing the corrosion of reinforcement concrete. Nevertheless, experimental studies on the concrete carbonation have not been carried out sufficiently because of the slow process of carbonation process. Therefore, this study adopts an experimental system exploiting a vacuum instrument that has been recently developed to accelerate carbonation instead of existing experimental system to conduct rapid carbonation tests on Portland cement and fly-ash cement concretes. Test results revealed that, compared to water-cement ratio of 40%, the carbonation depth increases from 103% to 138% for an increase of water-cement ratio from 45% to 60%. These results are larger than the carbonation depths obtained by mathematical model, and such difference is increasing with larger water-cement ratios. The results also indicated that larger fly-ash contents lead to sharp increase of the carbonation depth, which is in agreement with previous experimental researches. The adoption of the new accelerated carbonation test system enabled to shorten effectively the time required to produce experimental data compared to the existing carbonation test method. The experimental data obtained in this study together with ongoing acquisition of data using the new carbonation test method are expected to contribute in the understanding of the carbonation process of concrete structures in Korea.

Prediction of Carbonation Process in Concrete (콘크리트 중성화 진행의 예측)

  • 고경택;김성욱;김도겸;조명석;송영철
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.10a
    • /
    • pp.767-770
    • /
    • 1999
  • The carbonation process is affected both by the concrete material properties such as W/C ratio, types of cement and aggregated, admixture characteristics and the environmental factors such as CO2 concentration, temperature, humidity. Based on results of preliminary research on carbonation, this study is to propose a carbonation prediction model by taking into account of prediction model by taking into account of CO2 concentration and W/C ratio among major factors affecting the carbonation process.

  • PDF

Carbonation of Portland Cement Studied by Diffuse Reflection Fourier Transform Infrared Spectroscopy

  • Ylmen, Rikard;Jaglid, Ulf
    • International Journal of Concrete Structures and Materials
    • /
    • v.7 no.2
    • /
    • pp.119-125
    • /
    • 2013
  • Carbonation is a natural ageing process for cement. This study focuses on how the carbonation rate varies with selected hydration times and atmospheric conditions during the early stages of reacting dried cement paste. Diffuse reflection Fourier transform infrared spectroscopy is shown to be a suitable technique to monitor the formation of carbonates in cement. Combined with a previously developed freeze drying technique, carbonation can be studied at specific hydration stages. In ambient air both calcium hydroxide and calcium silicate hydrate (C-S-H) in cement are carbonated. Increased hydration time enhances the carbon dioxide uptake, which indicates that the calcium in the hydration products reacts more easily than the calcium in the clinker phase. In a humid $CO_2$ atmosphere, the carbonation process is so pronounced that it decomposes C-S-H into calcium carbonate and silica. In a moist $N_2$ atmosphere no carbonation occurs, but the sulfate chemistry of the cement seems to be affected due to the formation of ettringite.

A Study on the Prediction Method of Carbonation Process for Concrete Structures of Nuclear Power Plant (원전 콘크리트 구조물의 중성화 진행 예측 기법에 관한 연구)

  • Koh, Kyoung-Tack;Kim, Do-Gyeum;Kim, Sung-Wook;Cho, Myung-Sung;Son, Young-Chul
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.6 no.1
    • /
    • pp.149-158
    • /
    • 2002
  • The carbonation process is affected by both the concrete material properties such as W/C ratio, types of cement and aggregates, admixture characteristics and the environmental factors such as $CO_2$ concentration, temperature, humidity. Based on results of preliminary study on carbonation, this study is to develop a carbonation prediction model by taking account of $CO_2$ concentration, temperature, humidity ad W/C ratio among major factor affecting the carbonation process. And to constitute a model formula which correspond to the mix design of the nuclear power plant, test coefficient that correspond to the design of the nuclear power plant is obtained based on the results of accelerated carbonation test. Also a field coefficient which is obtained based on results of the field examination is included to improve the conformity of the actual structures of nuclear power plant.

Non-destructive assessment of carbonation in concrete using the ultrasonic test: Influenced parameters

  • Javad Royaei;Fatemeh Nouban;Kabir Sadeghi
    • Structural Engineering and Mechanics
    • /
    • v.89 no.3
    • /
    • pp.301-308
    • /
    • 2024
  • Concrete carbonation is a continuous and slow process from the outside to the inside, in which its penetration slows down with the increased depth of carbonation. In this paper, the results of the evaluation of the measurement of concrete carbonation depth using a non-destructive ultrasonic testing method are presented. According to the results, the relative nonlinear parameter caused more sensitivity in carbonation changes compared to Rayleigh's fuzzy velocity. Thus, the acoustic nonlinear parameter is expected to be applied as a quantitative index to recognize carbonation effects. In this research, combo diagrams were developed based on the results of ultrasonic testing and the experiment to determine carbonation depth using a phenolphthalein solution, which could be considered as instructions in the projects involving non-destructive ultrasonic test methods. The minimum and maximum accuracy of this method were 89% and 97%, respectively, which is a reasonable range for operational projects. From the analysis performed, some useful expressions are found by applying the regression analysis for the nonlinearity index and the carbonation penetration depth values as a guideline.

A Fundamental Study on the Effect of Activation Function in Predicting Carbonation Progress Using Deep Learning Algorithm (딥러닝 알고리즘 기반 탄산화 진행 예측에서 활성화 함수 적용에 관한 기초적 연구)

  • Jung, Do-Hyun;Lee, Han-Seung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2019.11a
    • /
    • pp.60-61
    • /
    • 2019
  • Concrete carbonation is one of the factors that reduce the durability of concrete. In modern times, due to industrialization, the carbon dioxide concentration in the atmosphere is increasing, and the impact of carbonation is increasing. So, it is important to understand the carbonation resistance according to the concrete compounding to secure the concrete durability life. In this study, we want to predict the concrete carbonation velocity coefficient, which is an indicator of the carbonation resistance of concrete, through the deep learning algorithm, and to find the activation function suitable for the prediction of carbonation rate coefficient as a process to determine the learning accuracy through the deep learning algorithm. In the scope of this study, using the ReLU function showed better accuracy than using other activation functions.

  • PDF

Carbonation of GGBFS paste and mortar: Effect of γ-Dicalcium Silicate Replacement to Mechanical Properties and Microstructure Characteristics (GGBFS 페이스트 및 모르타르의 탄산 : γ-Dicalcium 규산염 대체가 기계적 특성 및 미세 구조 특성에 미치는 영향)

  • Tran, Duc Thanh;Lee, Yun-su;Yan, Sirui;Lee, Han-seung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2020.06a
    • /
    • pp.71-72
    • /
    • 2020
  • γ-dicalcium silicate (γ-C2S) is characterized by its strong carbonation reactivity and has the prospect to be utilized as a building material with the added benefit of CO2 capture. This paper aims to point out the impact of γ-C2S on the microstructure characteristics and mechanical properties of GGBFS paste, and mortar samples. Three curing conditions including un-carbonation, natural carbonation, and accelerated carbonation were applied to the research. Besides, hydration products after the carbonation process are also detected. What's more, the carbonation treatment method also meets the requirement of capture more greenhouse gas and recycles the waste products of metallurgy.

  • PDF

Stabilization of Heavy Metal and CO2 Sequestration in Industrial Solid Waste Incineration Ash by Accelerated Carbonation (산업폐기물의 가속 탄산화법을 이용한 CO2 고용화 및 중금속 안정화 특성 연구)

  • Jung, Seong-Myung;Nam, Seong-Young;Um, Nam-Il;Seo, Joobeom;Yoo, Kwang-Suk;Ohm, Tae-In;Ahn, Ji-Whan
    • Mineral and Industry
    • /
    • v.26
    • /
    • pp.1-12
    • /
    • 2013
  • In this study, an accelerated carbonation process was applied to stabilize hazardous heavy metals of industrial solid waste incineration (ISWI) bottom ash and fly ash, and to reduce $CO_2$ emissions. The most commonly used method to stabilize heavy metals is accelerated carbonation using a high water-to-solid ratio including oxidation and carbonation reactions as well as neutralization of the pH, dissolution, and precipitation and sorption. This process has been recognized as having a significant effect on the leaching of heavy metals in alkaline materials such as ISWI ash. The accelerated carbonation process with $CO_2$ absorption was investigated to confirm the leaching behavior of heavy metals contained in ISWI ash including fly and bottom ash. Only the temperature of the chamber at atmospheric pressure was varied and the $CO_2$ concentration was kept constant at 99% while the water-to-solid ratio (L/S) was set at 0.3 and $3.0dm^3/kg$. In the result, the concentration of leached heavy metals and pH value decreased with increasing carbonation reaction time whereas the bottom ash showed no effect. The mechanism of heavy metal-stabilization is supported by two findings during the carbonation reaction. First, the carbonation reaction is sufficient to decrease the pH and to form an insoluble heavy metal-material that contributes to a reduction of the leaching. Second, the adsorbent compound in the bottom ash controls the leaching of heavy metals; the calcite formed by the carbonation reaction has high affinity of heavy metals. In addition, approximately 5 kg/ton and 27 kg/ton $CO_2$ were sequestrated in ISWI bottom ash and fly ash after the carbonation reaction, respectively.

  • PDF

Leaching of Ca, Fe and Si in Electric Arc Furnace Steel Slag by Aqueous Acetic acid Solution for Indirect Carbonation (간접탄산염화를 위한 전기로제강슬래그 중 Ca, Fe 및 Si 성분의 초산수용액 침출)

  • Youn, Ki-Byoung
    • Resources Recycling
    • /
    • v.26 no.1
    • /
    • pp.37-42
    • /
    • 2017
  • It has been reported that aqueous indirect carbonation process of calcium silicate mineral could be one of the most promising methods for $CO_2$ sequestration. The process consists of two main steps, extraction of Ca from calcium silicate and carbonation of the extracted solution by $CO_2$. Many types of acids such as HCl and $HNO_3$ can be used in the extraction step of the process. In the case of using aqueous acetic acid solution as the extraction solvent, acetic acid can be reproduced at the carbonation step of the extracted solution by $CO_2$ and recycled to extraction step for reuse it. Industrial by-products such as iron and steel slags are potential raw materials of the indirect carbonation process due to their high contents of calcium silicate. In this study, in order to examine the extraction efficiency of domestic electric arc furnace steel slag by aqueous acetic acid solution, extraction experiments of the slag were performed by using the aqueous acetic acid solutions of varying extraction conditions ; acetic acid concentrations, extraction temperatures and times.